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Computing temporal aggregates is an important but costly operation for applications that main-
tain time-evolving data (data warehouses, temporal databases, etc.) Due to the large volume
of such data, performance improvements for temporal aggregate queries are critical. Previous
approaches have aggregate predicates that involve only the time dimension. In this paper we
examine techniques to compute temporal aggregates that include key-range predicates as well
(range-temporal aggregates). In particular we concentrate on the SUM aggregate, while COUNT
is a special case. To handle arbitrary key ranges, previous methods would need to keep a separate
index for every possible key range. We propose an approach based on a new index structure called
the Multiversion SB-Tree, which incorporates features from both the SB-Tree and the Multiversion
B+-tree, to handle arbitrary key-range temporal aggregate queries. We analyze the performance
of our approach and present experimental results that show its efficiency. Furthermore, we address
a novel and practical variation called functional range-temporal aggregates. Here, the value of any
record is a function over time. The meaning of aggregates is altered such that the contribution of
a record to the aggregate result is proportional to the size of the intersection between the record’s
time interval and the query time interval. Both analytical and experimental results show the
efficiency of our result.
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General Terms: temporal aggregates, indexing, range predicates, functional aggregates

1. INTRODUCTION

With the rapid increase of historical data, temporal aggregates have become pre-
dominant operators for data analysis. Their computation is significantly more in-
tricate than for traditional aggregation without a time dimension. Each data tuple
is accompanied by a time interval, its so-called lifespan, during which its attribute
values are valid. Similarly, queries are associated with a time interval. A temporal
aggregate only considers tuples, whose lifespans intersect the query’s time interval.
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60 60

964−888−3277
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(now)

Fig. 1. An example range-temporal aggregate query.

Consider the example of Fig. 1. Each horizontal line segment represents a phone
call, having a duration and a price. For instance, the record with a unit price
of 35 cents started at time 4 and ended at time 6. The two records with right
arrows are on-going call records, whose end time is not known yet. One may be
interested in the total number of calls from the 951 area (Riverside, CA) during
the time interval [3, 8]. This query, illustrated by the shadowed box, is an example
of the plain range-temporal aggregate query. Specifically, the aggregate function
is COUNT, and the result is 3 since there are three records intersecting the query
range. Another widely-used aggregate function is SUM. In this example the total
price of the three call records is 35+60+60 = 155. Notice that the COUNT query
is a special case of SUM, where the value of every record is 1.

For some applications, one would want the contribution of a record to an aggre-
gate to depend on the length of the intersection between the query’s time interval
and the record’s lifespan. Again, consider the phone calls in Fig. 1. Suppose
the price associated with each record is the price per minute. The total cost of
phone calls intersecting the query rectangle is 35 ∗ 2 + 60 ∗ 1 + 60 ∗ 3 = 310. In
this case, the contribution of a record to the query is a function over time, e.g.
intersection ∗minuteprice.

More formally, this paper addresses the following problems:

Definition 1. Let S be a set of temporal records, each record having a key, a
time interval, and a value. Given a query key range R and time interval I:
ACM Transactions on Database Systems, Vol. V, No. N, M 2007.
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—A plain range-temporal aggregate query computes the total value of records
in S whose keys are in R and whose time intervals intersect I.

—A functional range-temporal aggregate query computes the weighted total
value of records in S whose keys are in R and whose time intervals intersect I.
The weight on each record is proportional to the length of intersection between
the record and I.

The two versions differ in how to explain the value of each object whose interval
intersects the query rectangle (composed of R and I). But both of them are indeed
temporal aggregate problems. In particular, the “plain range-temporal aggregate”
problem should NOT be read as “plain-range temporal aggregate” which might
suggest the query only considers a key range.

Like assumed in many existing work in temporal databases, this paper assumes
the transaction-time model, where updates in the database happen in non-decreasing
time order. We allow multiple updates to happen at the same time. When a tem-
poral record with key=k and value=v starts at time t1, an insertion is issued in
the form of ins (t1, k) : v. The end time of the record is stored as a special symbol
now. When the record ends at time t2, a logical deletion is issued in the form of
del (t2, k) : v. The correct end time of the record is recorded.

Range-temporal aggregate computation is closely related to the selection queries,
which retrieve records intersecting the query range. A large number of temporal
indices have been proposed to support the selection queries, as extensively surveyed
in [Salzberg and Tsotras 1999]. A straightforward approach to solve the range-
temporal aggregate queries is to utilize such an index to find records intersecting
the query range, and then aggregate their values on the fly. A major drawback
however, is that computational efforts are proportional to the number of selected
records. If many records satisfy the selection condition, the query performance can
be as poor as a linear search. For many applications, e.g. interactive analysis and
decision making, such performance is prohibitive. Although there is a large volume
of work on temporal aggregation, as reviewed in Section 2 they either do not solve
the same problem, or do not solve the problem efficiently, or do not find exact
answers, or do not assume the commonly-used word-wise machine model.

This paper proposes an indexing technique for computing range-temporal ag-
gregates with guaranteed logarithmic access time. First, the plain range-temporal
aggregate query is reduced into several sub-queries. Next, a index structure called
the Multiversion SB-Tree (MVSB-tree) is proposed to solve these sub-queries. The
proposed structure incorporates features from both the SB-Tree [Yang and Widom
2001] and the Multiversion B+-tree (MVBT) [Becker et al. 1996]. This structure
supports efficient queries and yet allows similarly efficient updates. In particular,
computing a plain range-temporal aggregate takes O(logb n) I/Os, where b is the
capacity of a disk page and n is the number of tuples in the warehouse. Updates
to the MVSB-tree are performed incrementally, as tuples are inserted. An update
takes O(logb K) I/Os, where K is the number of different keys inserted into the
warehouse. Space is bounded by O(n

b logb K).
Functional range-temporal aggregates can also be computed using the same struc-

ture (i.e. MVSB-tree) with constant augmentation on each index entry. Functional
range-temporal queries are hence computed with the same worst-case guarantee on

ACM Transactions on Database Systems, Vol. V, No. N, M 2007.
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query and update performance as well as index size. This solution is extended to
the case when a record has as value not a constant, but a general function.

The paper substantially extends from the conference version [Zhang et al. 2001]
of it, in the following ways.

(1) Extending the original problem to functional range-temporal aggregates.
(2) Presenting a more efficient query reduction technique for range-temporal ag-

gregates.
(3) Providing formal proofs for lemmas and theorems.
(4) Covering recent related work.
(5) Introducing more intuitive examples.
(6) Expanding performance studies.

The major contributions of the paper can be summarized as follows.

—It proposes the plain and functional range-temporal aggregate queries.
—It reduces the plain range-temporal aggregate query into dominance-sum queries.

In particular, two versions of reduction are discussed. The preliminary version of
the paper [Zhang et al. 2001] reduces a range-temporal aggregate query into six
dominance-sum queries. And this paper proposes a better reduction technique
which needs four dominance-sum evaluations.

—It proposes the MVSB-tree, to solve the dominance-sum query (and in turn to
solve the range-temporal aggregate queries). The index has a guaranteed worst-
case bound on the query performance, update performance, and index size. While
the straightforward solution to the range temporal aggregate problem has linear
query performance, this structure succeeds in logarithmic time.

—It solves the functional range-temporal aggregate query by augmenting the MVSB-
tree. The solution can be applied both to the case when the value associated with
a record is a constant, and when a general value function is involved.

The rest of the paper is organized as follows. Section 2 discusses background and
previous work. Section 3 presents techniques to reduce the plain range temporal
aggregate query to simpler problems. These (and thus the plain range-temporal
aggregate query) are solved using an MVSB-tree index, introduced and analyzed
in Section 4. Section 5 solves the functional range-temporal aggregate problem.
Section 6 presents results from our experimental comparisons. Finally, Section 7
concludes the paper and provides future research directions.

2. BACKGROUND

This section first describes previous research on temporal aggregation and the re-
lated problem of point aggregation, then reviews the SB-tree and MVBT from
which our proposed MVSB-tree draws ideas.

2.1 Temporal Aggregation

In the literature the term “temporal aggregation” has been used to represent the
computation of a transformed temporal relation storing all temporal aggregates.
Here an aggregate corresponds to a COUNT, SUM, AVG, MIN, or MAX of the
ACM Transactions on Database Systems, Vol. V, No. N, M 2007.
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records alive at one time instant. In more detail: a maximal continuous interval
on which the aggregate values remain the same is called a constant interval. The
process of grouping tuples over the constant intervals and computing their aggregate
values is called temporal grouping. Temporal aggregations denote the operations
that partition the time-line into constant intervals and perform temporal grouping
on the constant intervals.

[Kline and Snodgrass 1995] proposed the aggregation-tree, a main-memory struc-
ture based on the segment tree [Preparata and Shamos 1985], to incrementally com-
pute temporal aggregates. Since the aggregation-tree is not balanced, the worst-case
construction cost of it is O(n2). [Kline and Snodgrass 1995] also presented a variant
of the aggregation tree, the k-ordered tree, which is based on the k -orderliness of the
base table. [Gendrano et al. 1999; Ye and Keane 1997; Gao et al. 2004] introduced
parallel extensions to the approach presented in [Kline and Snodgrass 1995]. [Kim
et al. 1999] proposed the PA-tree which reduces the construction cost to O(n log n).
Similarly, [Moon et al. 2000] used a balanced tree which modeled after red-black
trees. These methods all reside in main-memory.

[Yang and Widom 2001; 2003] proposed the SB-tree, an incremental and disk-
based index structure, to address the temporal aggregation problem without a
predicate on the key range. Since our proposed structure extends the SB-tree, the
structure will be reviewed in more detail in a later sub-section.

[Tao et al. 2004] addressed an approximate version of the range-temporal ag-
gregate problem, with the goal to reduce the index size by allowing the query
result to be imprecise, but with bounded error. The proposed technique used the
original reduction technique we proposed [Zhang et al. 2001], which reduces one
range-temporal aggregate query into six queries. Although essentially all the six
queries are dominance-sums, our original reduction divides the six queries into two
categories: the LKLT query and the LKST query. Both types of queries take as
input a time instant t and a key k. The LKLT query (which stands for less-key &
less-time) asks for the total value of objects whose keys are less than k and whose
time intervals are strictly earlier than t. The LKST query (which stands for less-key
& single-time) asks for the total value of objects whose keys are less than k and
whose time intervals contain t. The proposed solutions in [Tao et al. 2004] focus on
answering the LKLT query and the LKST query approximately. There were two
solutions proposed. The first solution utilizes the MVBT to achieve logarithmic
query cost in the worst case. The second solution uses the off-the-shelf B+-tree
and R-tree to achieve the same query cost in the expected case. Not surprisingly,
by allowing the query result to be imprecise, both solutions in [Tao et al. 2004]
have much better index size. Another approximate temporal aggregation work is
[Tao and Xiao 2008], which solves the range-snapshot counting problem for a set
of temporal records: given a time instant t and a key range R, find the number of
records which are alive at t and whose keys are in R. A highly precise approxi-
mate solution is proposed. The error has a theoretical bound, and is typically less
than 5% as revealed by experimental results. The solution uses linear space and
has logarithmic query time and update time. This paper focuses on computing
range-temporal aggregates precisely.

[Kang et al. 2004] proposed the ITA-tree for computing range-temporal aggre-
ACM Transactions on Database Systems, Vol. V, No. N, M 2007.
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gates. Unlike the transaction-time model assumed in this paper (where updates
happen in increasing time order), [Kang et al. 2004] allows updates to happen in
any order. Also, a query can contain multiple range predicates, one for each at-
tribute. This solution however does not provide any guarantee on worst-case query
performance. The ITA-tree is basically a B+-tree which indexes records on their
start time instants. Thus unlike the SB-tree, there is no guarantee that at each
level, a constant number of sub-trees should be recursively examined. The worst-
case query performance is linear to the number of records. This paper aims for very
fast (logarithmic) query support.

2.2 Aggregate Computation over Rectangular Point

The reduction technique presented in Section 3 reduces the range-temporal aggre-
gate query to the dominance-sum query, a special case of the rectangular point
aggregate computation in that the query rectangle always uses the lower-left corner
of space as its lower-left corner. This reduction essentially makes all the existing re-
sults on the point aggregate problem applicable to the former. This section surveys
existing work on point aggregation.

[Govindarajan et al. 2003] proposed the Compressed Range B-tree (CRB-tree),
which is an external version of the Compressed Range tree [Chazelle 1988]. The
CRB-tree uses O(n/B) disk blocks and answers two-dimensional range-count queries
in O(logB n) I/Os. Here n is the number of points and B is the page capacity in
number of entries. The solution was extended to handle range-sum queries. The
basic idea is to store the weights along with the secondary structure. This solution
achieves near linear space cost and O(logBn) I/Os query cost. However, in order
to achieve such good space and query cost, [Govindarajan et al. 2003] assumed a
bit-wise machine model. That is, any integer v is represented by exactly log2 v bits.
For instance, eight small integers, each of which can be represented by 4 bits, can
be squeezed into four bytes. As a comparison, the typical word-wise model uses
four bytes to store a single integer. In general, implementing a structure with bit-
wise machine model is much harder than implementing a structure with word-wise
model. So the CRB-tree is mainly of theoretical value, as no common computer
architecture supports a bit-wise model. The model can be implemented on-top of
standard architectures; however at the cost of an immense overhead. Its perfor-
mance furthermore deteriorates with updates. This paper assumes the word-wise
model.

[Zhang et al. 2002] addressed the aggregate problem over multiple dimensions,
assuming the typical word-wise model. They focus on the dominance-sum problem
(find the total weight of objects to the lower-left of a query point), since the rect-
angular point aggregate problem is easily reducible to the dominance sum query.
Note that here we use terms in the 2D space for clarity, but the solutions apply to
higher dimensions. For instance, in higher dimensions, “to the lower-left” should
be explained as “has a smaller coordinate value in all dimensions”. [Zhang et al.
2002] presented two ways of extending the internal-memory and static ECDF-tree,
and found that the two versions have interesting tradeoffs. One version has good
query performance but poor index size and update cost, and the other version has
good index size and update cost, but poor query cost.

The best suggested index in [Zhang et al. 2002] is the BA-tree, which results
ACM Transactions on Database Systems, Vol. V, No. N, M 2007.
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from augmenting the k-d-B-tree. As in the k-d-B-tree, every node corresponds
to a rectangular space (the root node corresponds to the whole space), and the
space of an index node is partitioned to the spaces of its child nodes by alternating
partitioning dimensions. The augmentation the BA-tree has over the k-d-B-tree is
that each index entry stores an X-border, a Y-border, and a subtotal value. Here
the X-border corresponds to the X coordinates of the points below the index entry.
The Y-border corresponds to the Y coordinates of the points to the left of the
index entry. And the subtotal is the aggregate value of points to the lower-left of
the index entry. The meanings of the X-border and Y-border will be clearer after
studying the examples below.

ED H

FA q

D E H

FA q

D E H

FA q

D E H

FA q

D E H

FA q

C

B

(d) aggregate of points to the lower left of F

G

B

C

(b) aggregate of points "to the left" of F (c) aggregate of points below F(a) aggregate of points dominated by q

G B

C

B

C

G

GG

B

C

(e) aggregate of points inside F

+

= +

+

Fig. 2. Query processing in the BA-tree.

Fig. 2 illustrates the query processing algorithm in the BA-tree. The goal is to
find the dominance-sum of a given query point q, i.e. the total weight of points in
the shadowed region in Fig. 2(a). The region can be partitioned into four parts.
Fig. 2(b) shows the region to the left of the index entry F (which contains q). Note
that the total weight of points in this region is independent to the X coordinates of
these points. The BA-tree keeps, along with index entry F , a “Y-border”, which
is a 1D structure that keeps the aggregate information of the Y coordinates of the
points to the left of F . Similarly, Fig. 2(c) shows the region below F , where the
total weight can be calculated by query F ’s X-border. Fig. 2(d) shows the region
to the lower-left of F . This total weight is a fixed number as long as q is inside F ,
and therefore is kept as the subtotal of F . Finally, Fig. 2(e) shows the region inside
F , whose total weight is calculated by examining the child node which is referenced
by F . Collectively, these augmented information allow answering a dominance-sum
query by examining a single node at each level of the tree, rendering a query cost of
O(log2

b n). Here the additional O(log n) factor is needed for querying an X-border
and a Y-border at each level of the tree.

The update process of the BA-tree is illustrated in Fig. 3. To insert a new point
into the index, like in the k-d-B-tree it is recursively inserted to the sub-tree whose
spatial region contains the new point (referenced by E in Fig. 3a). Besides, some
X-borders, Y-borders, and subtotal values need to be updated. In particular, the
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Fig. 3. Update in the BA-tree.

X-borders of B and C needs to be updated (Fig. 3b). To see the correctness,
imagine a dominance-sum query is issued after the insertion, where the query point
falls into B. It will be expected that the X value of the inserted point is recorded
in the X-border of B. Similarly, the Y-border of H needs to be updated (Fig. 3c).
Finally, the subtotals of F and G needs to be updated (Fig. 3d).

The only existing work we are aware of on functional aggregate computation is
for spatial rectangular objects [Zhang et al. 2002]. There the addressed problem
was to find the total value of objects intersecting a query rectangle, where the
contribution of each object’s value to the query result is proportional to the size
of its intersection area with the query range. For example, in Fig. 4, there are
two objects intersecting the thick-bordered query region. The objects have values
4 and 3, which can be thought as how many grams of pesticide sprayed every
square foot. These two objects intersect with the query region with sizes 50 and 12,
respectively. Therefore the total volume of pesticide sprayed over the query region
is 4*50+3*12=236. The functional range-temporal aggregate query addressed in
this paper is similar to that addressed in [Zhang et al. 2002]. The difference is
that in our problem the intersection area of every object (a line segment) with the
query region is zero. In our problem, the contribution of each temporal object to
the query result should be proportional to the time duration of the object inside
the query region.

2 5 15 18 20 30

10

18

15

4
3

4

3

X

Y

6

26

Fig. 4. Functional aggregate computation over spatial objects.

Even though the BA-tree, as a dominance-sum index, can be used to solve the
range-temporal aggregate problem due to our reduction technique in Section 3, it
is not efficient. The reason is that it does not utilize the special features of the
temporal problem addressed in this paper.

With the transaction-time model, the update shown in Fig. 3 is not possible
(assuming the X axis is time and the Y axis is key). The reason is that the new
ACM Transactions on Database Systems, Vol. V, No. N, M 2007.
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point has an update time earlier than the start time of some index entries, which
violates the transaction-time model.

A, 0
C, 7

B, 0

D, 7

E, 9

A, 0
C, 7

B, 0

D, 7

E, 9

D, 8

E, 10

(a) before insertion (b) after insertion (without using LSO)

Fig. 5. Update in the MVSB-tree is much more efficient due to the transactional time model.

The new point in Fig. 5 follows the transaction-time model, since it occurs at a
time after all existing updates. This figure gives a precursor of an index node in the
MVSB-tree (Section 4), which can solve the dominance-sum query in transaction-
time model. The index needs to make sure that any dominance-sum query in the
shadowed region in Fig. 5(a) will take account the value of the newly inserted point
(assume the value is 1). The point is recursively inserted into the sub-tree rooted
by B, and therefore a later dominance-sum query is correct if the query point falls
into the region of B. The problem is when the query point falls into E (or D). As
shown in Fig. 5(b), the MVSB-tree’s idea is to break the index entry referencing E
(or D) into two, and increase the aggregate value stored with the second copy of the
index entry. This way, if a dominance-sum query point falls into the region of the
index entry (E, 10), the dominance-sum result will include the value of the newly
inserted point. Note that Section 4.2 will introduce the logical splitting optimization
(LSO), which makes sure that in an index node, a single entry needs to be updated.
Compared with the BA-tree where an update needs to update multiple X-borders
and Y-borders and subtotal values, the MVSB-tree is much more efficient. Indeed,
both query and update costs of the MVSB-tree have a factor of O(logB n) speedup
over the BA-tree approach.

Another point aggregation index is the aP-tree proposed by [Tao and Papadias
2004]. The paper has a very interesting conversion. As illustrated in Fig. 6, each
2D spatial point is converted to a horizontal line with right end open. A point
aggregate query is then converted to two 1D aggregate queries: find the aggregate
value of the points whose lines intersect the right border (or left border) of the
query rectangle. This is a 1D aggregation query in that, if we consider the Y
coordinates of all horizontal lines intersecting any particular X coordinate, we get
a set of 1D values, and the query is to find, given a 1D range, the aggregate of
objects in the range. This query can be answered in logarithmic time by an aB+-
tree, which is a B+-tree where each index entry stores the aggregate of all objects
in the sub-tree. To relax the restriction of considering a fixed X coordinate, one can
make the aB+-tree partially persistent. This is exactly the aP-tree. It is similar
to the MVBT. While the MVBT is a partially persistent B+-tree, the aP-tree is a
partially persistent aB+-tree.

Although the aP-tree, as a point aggregation index, can also be used to solve the
range-temporal aggregate query, it is an index that aims to store all the original
objects. In the range-temporal aggregate problem this paper considers, multiple

ACM Transactions on Database Systems, Vol. V, No. N, M 2007.
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= −

(a) the number of points in the rectangle
(which is 3)

(c) the number of lines intersecting(b) the number of lines intersecting
the left border (which is 1)the right border (which is 4)

Fig. 6. The aP-tree converts points into lines and converts a point aggregate query into two 1D
aggregate queries.

points to be inserted will have the same key. For instance, at the start and end
times of the same phone call record, or at start or end times of multiple phone call
records with the same phone number. In this case, our proposed MVSB-tree index
is better because as a specialized aggregation index which does not care to store the
inserted points themselves, multiple updates with the same key may be aggregated
together. While the MVSB-tree has an update cost of O(logb K) where K is the
number of distinct keys, the aP-tree has an update cost of O(logb n) where n is the
number of inserted points.

2.3 The SB-tree

Since our proposed index structure, the MVSB-tree, draws ideas from the SB-tree
[Yang and Widom 2001; 2003], we review the SB-tree in greater detail.

The SB-tree was proposed to answer the temporal aggregate queries without
range predicates. In particular, given a set of temporal records, each having a time
interval and a value, the instantaneous temporal aggregate query is to find the total
value of records whose intervals contain some time instant t, and the cumulative
temporal aggregate query is to find the total value of records whose intervals intersect
some time interval I.

The SB-tree incorporates properties from both the segment tree [Preparata and
Shamos 1985] and the B-tree. The segment tree’s features ensure efficient updates,
even for tuples with long lifespans. B-tree properties make the structure balanced
and disk-based. Conceptually the SB-tree indexes the time domain of the aggre-
gated tuples. Each interior tree node contains between b/2 and b records, repre-
senting contiguous time intervals. Intervals are kept in both interior and leaf nodes.
The interval associated with a node contains all intervals in the node’s subtrees.
For each interval, a value is associated with the record, storing the aggregate over
this interval.

As an example, consider the four temporal records in Fig. 7(a). Here for simplicity
assume all objects have value = 1. An example of the instantaneous temporal
aggregate query is to find the total value of, which in this case is the number of,
objects whose intervals contain the time instant t = 3.5. Obviously, the query
result should be 2. The SB-tree logically maintains the aggregate result for all time
instants. Such aggregation result is shown in Fig. 7(b). For instance, the value
associated with the time interval [3,4) is 2. This means that the instantaneous
temporal aggregate for any time instants ∈[3,4) is 2.

One may wonder: what if a new record with time interval [1,8) is inserted into
ACM Transactions on Database Systems, Vol. V, No. N, M 2007.
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Fig. 7. Illustration of the SB-tree.

the base table? A näıve approach is: in Fig. 7(b), update the aggregates stored
along with most of the intervals, except (-∞,1) and [8,∞). This approach has linear
update cost. The SB-tree achieves logarithmic update performance by maintaining
a paginated and balanced tree structure. As illustrated in Fig. 7(c), the intervals
keeping aggregate results are kept as leaf entries. Adjacent intervals are kept in a
leaf node. As in the B-tree, every node except the root has between b/2 and b entries.
Each leaf node is referenced by an index entry, which also has an interval (the union
of all intervals in the leaf node). The index entries are kept in index nodes. Higher
index levels can be recursively built. Each index entry keeps an aggregate value:
the total number of intervals inserted which fully covers the duration of the index
entry. Note that Fig. 7(c), where all index entries have aggregate value=0, is for
illustration purpose only. It is built from Fig. 7(b), not by dynamically inserting
the objects in Fig. 7(a) into an initially empty SB-tree. But the tree is correct,
in the sense that any instantaneous temporal aggregate query will get the correct
result, which is stored with the corresponding leaf entry.

The key to reducing the update cost from linear time to logarithmic time is to
make sure that the update process examines at most two index nodes at each level.
These are the nodes referenced by the two index entries (at the parent level) whose
intervals contain the two end points of I. Here I denotes the interval to be inserted.
For an index entry whose interval is contained in I, we update the value stored along
with the index entry, without going into the subtree and update the values of all
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leaf entries. For instance, Fig. 7(d) shows the SB-tree after inserting [1,8) into the
SB-tree of Fig. 7(c). The entries whose values are modified are shadowed.

An instantaneous temporal aggregate is computed by recursively searching the
SB-tree (starting from the root) and accumulating aggregate values of visited nodes.
This results in fast aggregate computation time, namely, O(logb n).

Two SB-trees are used to support cumulative SUM, COUNT and AVG aggregates
with arbitrary window offset w. One SB-tree maintains the aggregates of records
valid at any given time; the other maintains the aggregates of records that are
valid strict before any given time. To compute an aggregate, the approach first
computes the aggregate value t+w. It then adds the aggregate value of all records
with intervals strictly before t + w and finally subtracts the aggregate value of all
records with intervals strictly before t.

2.4 Partially Persistent B-trees

In a persistent data structure, every update creates a new version of the data
structure, while previous versions are still retained and can be accessed. In an
ephemeral structure, in contrast, any old version is discarded. Partial persistence
implies that updates are applied only to the latest version of the data structure,
creating a linear ordering of versions. Clearly, partial persistence fits with the
notion of transaction-time, version numbers replaced by the ordered sequence of
time instants. As we will show, the MVSB-tree is an SB-tree that has been made
partially persistent. The approach has been influenced by the MVBT [Becker et al.
1996] which is a structure that makes a B+ tree partially persistent.

The MVBT keeps track of a set of temporal records, each having a key and a
time interval. It optimally solves (in linear space) the range-snapshot query: “Find
all tuples with keys in range R that were alive at time t”. If the query answer has
size s, the MVBT finds this answer in O(dlogb n+s/be) I/Os. Here n is the number
of records, and b is the page capacity.

The MVBT is a graph structure that maintains the evolution of a B+-tree over
time. It has many roots, each responsible for the subsequent part valid during a
specific time interval. References to the different roots associated with the corre-
sponding time intervals are kept in an additional data structure called root∗. The
MVBT partitions the key-time space into rectangles where each rectangle is asso-
ciated with exactly one data page. A data record is stored in all the data pages
whose key-time rectangle contains the data record’s key and intersects the record’s
interval. The page rectangles are created recursively. As records are inserted into a
certain page of a MVBT, the page may overflow. At that time, this page’s currently
alive data records are copied to another page. The kind of copying is based on the
number of alive records in the overflowed page. A time-split simply copies all alive
records into a new page (Fig. 8a). If many alive records exist, the time-split is
followed by a key-split that distributes them into two new pages according to the
median of their key attribute (Fig. 8b).

Data records are inserted in the MVBT in increasing time order (i.e., transaction-
time is assumed [Jensen and Snodgrass 1999]). When a data record is inserted at
t, its deletion time is yet unknown and its interval is initiated to [t, now); now
is a variable representing the ever increasing current time. For implementation
purposes, now is stored as maxtime. When later (if ever) this data record is
ACM Transactions on Database Systems, Vol. V, No. N, M 2007.
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(d) merge & key−split
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(a) time−split (b) time−split & key−split

key

time

(c) merge

Fig. 8. Structural changes in an MVBT.

deleted or updated, the end time in its interval is updated from now to the deletion
time.

An important feature of the MVBT is that it guarantees a minimum key density
for every page. In particular, for any time t in the page’s rectangle, the page
contains at least d t-alive records, where d is linear to the page capacity. To achieve
this, the MVBT uses yet another structural change: merge. If a weak underflow
occurs after a deletion, i.e. the key density of the page where the deletion takes
place drops below the threshold d, the alive records in the page and a sibling page
are copied into a new page (Fig. 8c). To avoid frequent merge/splits, the MVBT
requires that when a new page is created, the number of records in it must be
between a lower bound and a higher bound (strong condition). If the result page of
a merge operation has too many records (more than the upper bound), a key split
is performed immediately (Fig. 8d).

3. PROBLEM REDUCTION FOR THE PLAIN RANGE TEMPORAL AGGREGATE
QUERY

In the preliminary version of this paper [Zhang et al. 2001] we proposed a tech-
nique which reduces a plain range temporal aggregate query to six sub-queries. In
Section 3.1 we propose a new and better technique which reduces a query to four
sub-queries. The old reduction technique is described in Section 3.2. To get an
overall picture, Section 3.3 provides the indexing scheme, update and query algo-
rithms, with the assumption that a dominance-sum index exists. Section 4 proposes
the MVSB-tree, solving dominance-sum queries efficiently.

3.1 Four Query Reduction

This section first defines dominance-sum queries and then shows how to reduce a
plain range-temporal aggregate query to four such queries.

Definition 2. Let P be a set of point objects in the 2D time-key space. Each
record consists of a time instant, a key, and a value. A query point q = (t, k)
dominates all objects with time instants smaller than t and with keys less than k.
The dominance-sum query computes the total value of objects in P dominated
by q.

In Fig. 9 the query point q dominates two objects (in the shadowed region) with
values 2 and 3, respectively. Therefore the dominance sum for q is 2 + 3 = 5.

Theorem 1. A plain range-temporal aggregate query can be reduced to four
dominance-sum queries.
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time
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q

Fig. 9. A dominance-sum query.

(c) (d) (e)(a) (b)

= +−−Q Q Q QQ

Fig. 10. Plain range-temporal aggregate query, reduced to 4 dominance-sum queries.

Proof. Intuitively, a query time interval and a key range collectively form a
query rectangle Q in 2-dimensional time-key space. The plain range-temporal ag-
gregate query asks for the total value of objects intersecting Q. The query rect-
angle Q has 4 corners. A range-temporal aggregate query is then reduced to 4
dominance-sum queries, one for each corner of the query box, as illustrated in
Fig. 10. In particular, Fig. 10(a) shows a query rectangle intersected by two records.
The range-temporal aggregate query asks to compute the total value of these two
records.

To prove the theorem, we first note that in order for a record o to intersect
the query rectangle Q, the left corner of o has to be dominated by the upper
right corner of Q. Fig. 10(b)shows the candidate records. Some candidates are
false positives since they are either completely to the left, or completely under, Q.
The false positives to the left of Q correspond to those whose right corners are
dominated by the upper left corner of Q (Fig. 10(c)). The false positives under
Q correspond to those whose left corners are dominated by the lower right corner
of Q (Fig. 10(d)). After these false positives are subtracted from the query result,
objects whose right corners are dominated by the lower left corner of Q (Fig. 10(e))
have been subtracted twice. Hence, their sum must be added again.

To sum up, if there exists an index that efficiently computes dominance sums,
we can use two such indices to compute range-temporal aggregates in the following
way. Maintain a dominance-sum index for the left corners of all records, and a
separate dominance-sum index for the right corners of all records. A range temporal
aggregate query is reduced to two dominance-sum queries on the left corners and
two dominance-sum queries on the right corners.

3.2 Six Query Reduction

Our old reduction technique [Zhang et al. 2001] reduces a plain range-temporal
aggregate query to two LKST queries and four LKLT queries. This section first
describes these query types, then the reduction technique, and finally links the
LKST and LKLT queries to the dominance-sum query.

Definition 3. Let S be a set of temporal records, each record having a time
ACM Transactions on Database Systems, Vol. V, No. N, M 2007.
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interval, a key, and a value. Given a time instant t and a key k,

—The less-key, single-time (LKST) query computes the total value of records
in S whose keys are less than k and whose time intervals contain t.

—The less-key, less-time (LKLT) query computes the total value of records in
S whose keys are less than k and whose time intervals are strictly before t (i.e.
whose end times are on or smaller than t).

Theorem 2. The plain range-temporal aggregate query is reduced to two LKST
and four LKLT queries.

Proof. Let the query key range be R = [k1, k2) and the query time interval be
I = [t1, t2). If we only consider tuples with keys in R, the total value of tuples
whose intervals intersect I is equal to the total value of those tuples alive at t2, plus
the total value of those tuples alive strictly before t2, minus the total value of those
tuples alive strictly before t1. This can be described by the following equation:

SUM(R, [t1, t2]) = SUM(R, t2) + SUM(R, end ≤ t2)− SUM(R, end ≤ t1)

We now consider all the tuples alive at t2. SUM(R, t2) can be computed as the
total value of the tuples whose keys are less than k2 minus the SUM of the tuples
of the records whose keys are less than k1. Or,

SUM(R, t2) = SUM(key < k2, t2)− SUM(key < k1, t2)

= LKST (k2, t2)− LKST (k1, t2)

Similarly, we have:

SUM(R, end ≤ t2) = LKLT (k2, t2)− LKLT (k1, t2)

SUM(R, end ≤ t1) = LKLT (k2, t1)− LKLT (k1, t1)

Hence, we get:

PRTA([k1, k2), [t1, t2)) = LKST (k2, t2) + LKLT (k2, t2) + LKLT (k1, t1)

− LKST (k1, t2)− LKLT (k1, t2)− LKLT (k2, t1) (1)

Here PRTA stands for plain range-temporal aggregate. Clearly, a range temporal
aggregate query is reduced to two LKST queries and four LKLT queries.

Interestingly, both the LKLT query and the LKST query can be mapped to
dominance-sum queries. First, it is easy to see that a LKLT query is exactly the
dominance-sum query, if we consider the right corners of all records.

(b) DS on start points is 6
time

key

t

k q

3
2

1

(a) LKST result is 5 (c) DS on end points is 1
time

key

t

k q

3
2

1

time

key

t

k q

3
2

1

time

key

t

k q

3
2

(d) unified DS is 5

1

−1

Fig. 11. The LKST query is also reduced to the dominance-sum query.

To see that the LKST query can also be reduced to the dominance-sum query,
consider Fig. 11. In Fig. 11(a), the LKST result, corresponding to q = (t, k), is
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2+3 = 5. There are two records with values 2 and 3 whose time intervals contain t
and whose keys are smaller than k. Notice that the start points of both records are
dominated by q. But the dominance-sum of q on the starting points of the records
(Fig. 11(b)) is more than what is needed. The difference is the dominance-sum
of q on the end points of the records (Fig. 11(c)). By combining the two cases,
we can keep the start points and end points of all records in one dominance-sum
structure, where the value for each end point is negative to the original value. An
LKST query result is the dominance-sum of these end points (Fig. 11(d)).

3.3 The Overall Picture

Before describing the MVSB-tree in Section 4 which keeps a set of 2D point objects
and efficiently supports the dominance-sum query, this section summarizes the two
above approaches in terms of indexing, insertion, and query schemes supporting
the plain range temporal aggregate query, utilizing the MVSB-tree as the basic
building block.

End−

(start, k): v insert (end, k): v
DS(upperright)
DS(lowerright)

DS(upperleft)
DS(lowerleft)

A query rectangle
upperleft

lowerleft lowerright

upperright

Operations in the base table:
ins (start, k): v del (end, k): v

(b) Query(a) Update

MVSB−tree MVSB−tree
Start− End−

MVSB−tree MVSB−tree
Start−

insert

Fig. 12. The Four Query approach.

The Four Query approach is illustrated in Fig. 12. It uses two MVSB-trees,
one corresponding to the start points of the original temporal records and the
other corresponding to end points. For ease of presentation we name the two trees
Start-MVSB-tree and End-MVSB-tree. A single temporal record with key = k,
timeinterval = [start, end), and value = v, requires two updates, one in each
MVSB-tree. The record’s start point is inserted into the Start-MVSB-tree, and
its end point is inserted into the End-MVSB-tree. To answer one plain range-
temporal aggregate query, four dominance-sum (DS) queries are performed, two
in each MVSB-tree. Let the four corners of the query rectangle be lowerleft,
lowerright, upperleft, and upperright. As illustrated in Fig. 10, the aggregate
result is calculated as:

DSStart(upperright)−DSEnd(upperleft)−DSStart(lowerright)+DSEnd(lowerleft)

The Six Query approach is illustrated in Fig. 13. It uses two MVSB-trees, one
corresponding to the LKLT query and the other corresponding to the LKST query.
We name the two trees LKLT-MVSB-tree and LKST-MVSB-tree. A single temporal
record with key = k, timeinterval = [start, end), and value = v, requires three
updates. The start point is inserted into the LKLT-MVSB-tree, while both the
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Fig. 13. The Six Query approach.

start point and the end point are inserted into the LKST index. In particular, the
end point inserted to the LKST index has negative value. To answer one plain
range-temporal aggregate query, six dominance-sum (DS) queries are performed,
two in the LKLT-MVSB-tree and four in the LKST-MVSB-tree. As Equation 1
shows, the aggregate result is:

DSLKST (upperright) + DSLKLT (upperright) + DSLKLT (lowerleft)

−DSLKST (lowerright)−DSLKLT (lowerright)−DSLKLT (upperleft)

4. THE MULTIVERSION SB-TREE

This section presents the Multi-version SB-tree (MVSB-tree), a disk-based, pag-
inated, and dynamically updateable index structure that efficiently supports the
dominance-sum query. The index executes, in logarithmic time, the update and
query operations as described below.

—An update is to insert a 2D (time and key) point (t,k) with value v into the index.
According to the transactional time model, objects are inserted in non-decreasing
time order.

—A query is to find the total value of objects, ever inserted into the index, which
are dominated by some query point in the time-key space.

4.1 The Initial MVSB-tree with A Single Disk Page
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2
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maxtimemaxtime

maxkey

1

R1

0

(a) the initial MVSBT

maxkey
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R1

32

0

0
0
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(b) after inserting <2, 20>:1 (c) after inserting <3, 10>:1

1 2

1

Fig. 14. A MVSB-tree after one and two insertions.
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Fig. 14(a) illustrates the initial MVSB-tree with no object inserted. It has a a
single page R1 which is both a root page and a leaf page. Inside R1, a single record
is stored. The record has a rectangle which is the whole time-key space, and a value
which is 0. This value is the dominance-sum query result for any query point that
falls inside of the rectangle of the record. To answer a dominance-sum query, the
value of the record whose rectangle contains the query point is returned. Since no
object has been inserted yet, any dominance-sum query will return 0.

Suppose an object 〈2, 20〉 : 1 has been inserted, Fig. 14(b). It is a point (2, 20)
with value 1. The dominance-sum query result is 1 if the query point is located
to the upper right of (2, 20), and 0 otherwise. The MVSB-tree implements this
by splitting the original record into three. The rectangles of these three records
do not overlap, and their union covers the whole space. The value of each record
remains the dominance-sum query result for query points that fall inside the record’s
rectangle. To continue the example, Fig. 14(c) shows the layout of the MVSB-tree
after inserting 〈3, 10〉 : 1.
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(a) q1=(5, 30) dominates 2 objects (b) q2=(5, 16) dominates 1 object
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q1
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Fig. 15. Dominance-sum queries on a MVSB-tree.

To see how dominance-sum query results are stored in the MVSB-tree, examine
Fig. 15(a). Query point q1 dominates both inserted objects. The dominance-sum
query result is the total value of these two objects, which is 2. Indeed the record
whose rectangle contains q1 has value 2. Fig. 15(b) shows another dominance-sum
query, with query point q2. It dominates one of the inserted objects. Indeed the
record whose rectangle contains q2 has value 1.

4.2 The Logical Splitting Optimization

In Fig. 14(b), the right border of the rectangle (which corresponds to maxtime) has
two segments: one with key range [1, 20), the other with key range [20, maxkey).
Each segment corresponds to a different record stored in the page. A new insertion
may split both records as shown in Fig. 14(c). In general, one insertion may split
many such records, incurring an enormous space cost.

We propose the Logical Splitting Optimization (LSO) which splits a single
record, but is logically equivalent to splitting multiple records. The idea is that
we only split the record whose key range contains the key of the new object. This
split physically adds a value to only one record. The counterpart of Fig. 14(c) with
LSO is shown in Fig. 16(a). In order to produce the correct dominance-sum query
result, the query result is produced by aggregating the values of records below the
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(a) page layout with LSO
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Fig. 16. The counter part to Fig. 14(c) using LSO.

query point. This is illustrated in Fig. 16(b). The dominance-sum of the query
point q is computed by aggregating the values 1, 1, and 0.

4.3 The Complete Structure
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[1, 4): R1, [4, maxtime): R2

Fig. 17. Inserting 〈4, 80〉 : 1 to Fig. 16(a).

4.3.1 Split, strong condition, and root∗. With more objects inserted to the
MVSB-tree with a single page, eventually the page overflows. To handle an over-
flow, all alive records (whose rectangles end at maxtime) are copied to a new page.
This is called a time split. However, the newly generated page may already be
almost full. In such a case, a few subsequent insertions in the page trigger another
time split, resulting in a space cost of Θ(1) block per insertion. To avoid this phe-
nomenon, we require that after a time split, the new block should have at most f · b
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records, where constant f ∈ (0, 1) is called the strong factor, and b is the maximum
number of records in a page. We call this requirement the strong condition. If a
newly generated page due to a time split strong overflows (having more than f · b
records), it is key split, that is, it is split into two (or more, if f is small) along the
key dimension and the records are distributed evenly among these pages. Consider
the insertion of 〈4, 80〉 : 1 into Fig. 16(a). Assume b = 6, and f = 0.5. The insertion
causes the record whose rectangle contains (4, 80) to split (Fig. 17(a)). Notice that
the new record located at the upper-right corner of space has value 1, according to
the logical splitting optimization. Now the page has 7 records, while the maximum
capacity is 6; it overflows. The four records touching the right border of space are
copied to a new page. The strong condition states that this page should have no
more than f · b = 3 records. A strong overflow occurs and a key split takes place,
distributing the records evenly into two pages (Fig. 17(b)), with key ranges [1, 20)
and [20, maxkey), respectively. Notice that according to the logical splitting opti-
mization, in the page with key range [20, maxkey), the value of the lowest record
is adjusted by adding the total value of records in the other page. An index page is
then allocated to reference the two new pages. This index page is the second root
page of the index. Its start time is the current time (= 4), while the previous root
ends at time 4. All the root nodes are indexed by a structure called root∗. The
MVSB-tree after the insertion is shown in Fig. 17(c).
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Fig. 18. Inserting 〈5, 10〉 : −1 to Fig. 17(c).

4.3.2 Updating an index entry. An additional insertion introduces the update of
index entries. Consider the insertion of 〈5, 10〉 : −1 into Fig. 17(c). The insertion
starts at the alive root R2. In the root page, there are two alive index entries
pointing to page A and B, respectively. The key range of A contains the key = 10
to be inserted. The insertion recursively goes to the page A. The key range of
B, which is [20, maxkey), is fully covered by the range [10, maxkey). Instead of
updating all records in B, we update the index entry pointing to page B. The
result of the update is shown in Fig. 18.

4.3.3 At any time instant, the MVSB-tree is an SB-tree on the key space. To
see that the MVSB-tree uses the SB-tree structure on the key space, let’s assume
the time dimension collapses to a single time instant. The dominance-sum problem
in this 1-dimensional space becomes:
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Consider a set S of 1-dim objects, where every object o ∈ S has a key o.key and
a value o.value. Given a query key q, compute the total value of objects in S whose
keys ≤ q.

Notice that ∀ object o ∈ S, o.key ≤ q iff q ∈ [0,maxkey). Hence, the 1-dim
dominance-sum problem can be transformed to:

Consider a set S of interval objects, where every object o ∈ S has an interval
[o.key, maxkey) and a value o.value. Given query key q, compute the total value
of objects whose intervals contain q.

This latter problem is exactly the problem the SB-tree was proposed to solve. In
other words, the SB-tree perfectly solves the 1-dim dominance-sum problem, if we
ignore the time dimension. To extend the solution to involve the time dimension, a
natural extension is to make an SB-tree partially persistent. Logically, the partially-
persistent SB-tree (also called Multi-version SB-tree) is equivalent to a series of SB-
trees, one at each time instant. An insertion operation and a point query involving
time t are directed to the SB-tree corresponding to t. Physically, of course, it is too
expensive to store a separate SB-tree at every time instant. The features from the
MVBT reduce this space. While logically equivalent to a set of B+-trees, one at
each time instant, the MVBT nicely embeds the set of B+-trees in such a way that
the overall space is linear [Becker et al. 1996]. The structure we propose is named
the MVSB-tree, because it is indeed a multi-version SB-tree index.

4.3.4 The structure. The MVSB-tree is a directed acyclic graph of disk-resident
nodes that results from incremental insertions to an initially empty SB-tree. It has
a number of SB-tree root nodes that partition the time space in such a way that
each SB-tree root stands for a disjoint time interval and the union of these intervals
covers the whole time space. A point query for a certain time instant t is directed
to the root node whose time interval contains t. References to the root nodes are
maintained in a structure called root*, commonly implemented as a B+-tree.

There are two types of pages in a MVSB-tree: the index pages and the leaf pages,
all having the same size. An index page contains routers pointing to child pages,
while a leaf page does not. For simplicity, we assume that both a leaf page and an
index page have the same maximum capacity of b records. A leaf record (one stored
in a leaf page) has the form 〈range, interval, value〉 where range, interval gives a
rectangle in the key-time space and value is an aggregate value which is associated
with every point in the rectangle. An index record (one stored in an index page)
has the form 〈range, interval, value, child〉. Compared with a leaf record, it has a
pointer to some child page. Each page p also has a rectangle, where p.range is the
union of the ranges of all the records in the page and p.interval is the time interval
between the time the page is created and the time the page is copied. A page is
said to be alive if it has not been copied yet. The following property shows the
relationships among the records in a page:

Property 1. All the records in a MVSB-tree page have non-intersecting rect-
angles whose union equals the page’s rectangle.

For instance, in root R1 of Fig. 18, the five entries fully partition the space of
R1.

Since we assume that insertions come in non-decreasing time order, an insertion
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only goes into an alive page and it only affects the alive records in the page. Consider
an alive page p and all the alive records in p. Due to Property 1, the key ranges
of these records do not intersect and their union is equal to p.range. For ease of
discussion, we define some terms regarding the alive records in p. Given a key
k ∈ p.range, a partly-covered record is one whose key range intersects with, but
is not contained in, [k, maxkey); a fully-covered record is one whose key range is
contained in [k,maxkey); a first fully-covered record is a fully-covered record whose
key range is lower than that of any other fully-covered record. Obviously, for any
key k ∈ p.range, there can be at most one partly-covered record and at most one
first fully-covered record. If p is an index page, we also call the child page which is
pointed to by the partly-covered record as the partly-covered child page.

The Logical Splitting Optimization, page split, and strong condition, as discussed
before all apply to the index page. These concepts become clearer after studying
insertions.

4.4 Detailed Algorithms

This section formally describes the query and insertion algorithms for the MVSB-
tree.

Algorithm DominanceSumQuery
Input: An MVSB-tree mvsbt, Key k, Time t.
Output: the total value of inserted point objects whose keys < k and whose times < t.

(1 ) Let page be the root node in mvsbt whose life span contains t.

(2 ) v = 0;

(3 ) while page is an index page

(a) Let rec be the index entry in page whose rectangle contains (t, k).

(b) Derive the value of rec and add to v.

(c) Let page be the node referenced by rec.

end while

(4 ) Let rec be the leaf entry in page whose rectangle contains (t, k).

(5 ) Derive the value of rec and add to v.

(6 ) return v.

Fig. 19. The algorithm to compute dominance-sum in an MVSB-tree.

Fig. 19 shows the query algorithm. The algorithm searches a single path from
root to leaf in the MVSB-tree. The nodes in the path are those whose rectangles
in the time-key space contain the query point (t, k). Since every root node in
the MVSB-tree corresponds to the whole key space, to find the root node whose
rectangle contains (t, k), only the time t is used (Step 1). Along the path, each
entry corresponds to a value. The aggregate of these values is the query result.
However, each such value needs to be derived (Steps 3b and 5) due to the logical
splitting optimization.

As an example, consider a dominance-sum query with (t=10, k = 100) in Fig. 18.
This query point dominates all the four points inserted into the initially empty
ACM Transactions on Database Systems, Vol. V, No. N, M 2007.
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MVSB-tree, namely: 〈2, 20〉 : 1, 〈3, 10〉 : 1, 〈4, 80〉 : 1, and 〈5, 10〉 :-1. The
dominance-sum query result should be 1 + 1 + 1 − 1 = 2. Let’s see how the
DominanceSumQuery algorithm in Fig. 19 computes this. In Fig. 18, the search
path contains R2 and B. The entries in them, whose rectangles contain the query
point, are labelled “-1, B” in R2 and “1” in B, respectively. But due to LSO, the
values -1 and 1 are not the actual values of these entries. The actual values should
be derived by aggregating the values of all entries “below” each of these two entries.
That is, the value of the entry “-1, B” is -1+0=-1, and the value of the entry “1” is
1+2=3. Finally, the aggregate value of these entries, -1+3=2, is the correct query
result.

Fig. 20 is the insertion algorithm of the MVSB-tree. The insertion examines a
single path from root to leaf (Step 1). These are the nodes whose rectangles contain
the new point. Note that the insertion may not go all the way to the leaf level. If
at some index node along the insertion path, there is no partly covered record, the
insertion does not go to the sub-tree. For instance, in Fig. 18, if the next point to
be inserted has key=20, the index entry in node R2 labelled “-1,B” will be split
into two, but no leaf node needs to be modified.

Once the insertion path is fixed, the insertion is performed in a bottom-up fashion
(Step 2). Step 2(a) and 2(b) differs in whether the insertion takes place in the lowest
node in the path. There are two differences in the two cases. The first difference is
that in the lowest page the algorithm tries to split the partly covered record. For
instance, suppose an insertion takes place in Fig. 18 at time=6 and key=5. There
is a partly covered record in both node R2 (labelled “0,A”) and node A (the lower
entry labelled “0”). But they are treated differently. In R2, the partly covered
record is not split. Rather, the fully covered entry “-1,B” should be split. But in
A, the partly covered record is split. The other difference is that a non-lowest node
may receive an additional reference to a newly generated child node.

Finally, if the root node splits, a new root is created (Step 3).

4.5 Record Coalescence and Page Coalescence

In this section we describe two additional optimizations.

4.5.1 The Record Coalescence Optimization. The Record Coalescence Optimiza-
tion (RCO) allows to compact more records in a page and thus leads to less overall
space. Two leaf records lrec1, lrec2 in the same page can be coalesced either
horizontally (time merge) or vertically (key merge). A time merge takes place, if
(a) lrec1.range = lrec2.range; (b) lrec1.end = lrec2.start; and (c) lrec1.value =
lrec2.value (Fig. 21(a)). A key merge takes place, if (a) lrec1.interval = lrec2.interval;
(b) lrec1.high = lrec2.low; and (c) lrec2. value = 0 (Fig. 21(b)).

Index records are coalesced similarly. The difference between merging index and
leaf records is that two index records can be merged only if they point to the same
child page.

Consider inserting 〈5, 5〉 : 1 in Fig. 18. The two index entries in R2 that both
point to B will be time merged. In the same example, a key merge happens in
page A. The MVSB-tree after the insertion is shown in Fig. 22. One may wonder
whether inserting a record at time=5 violates the transactio-time model, since
an insertion has already taken place at time=5 and the transaction-time model
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Algorithm Insert
Input: An MVSB-tree mvsbt, Key k, Time t, Value v.
Action: Insert 〈t, k〉 : v into mvsbt.

(1 ) Starting from the last root in mvsbt, find the path of nodes whose rectangles contain

the new point (t, k).

(2 ) for each node n in the path from bottom up,

(a) if n is the lowest node in the identified path

i. If there is a partly covered record in n, split it. Otherwise, split the lowest

fully covered record.

ii. If n overflows, split.

(b) else

i. Split the lowest fully covered record.

ii. If the child page has split, accommodate the entry pointing to the new child.

iii. If n overflows, split.

end if

end for

(3 ) If the root node was split, create a new root.

Fig. 20. The algorithm to insert a point in an MVSB-tree.

lrec1 lrec2

v v
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(a) time merge
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Fig. 21. Time and key merge.
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Fig. 22. Inserting 〈5, 5〉 : 1 to Fig. 18.

prohibits updating history. The answer is that it still follows the slightly extended
transaction-time model which allows multiple insertions at every version.

4.5.2 The Page Coalescence Optimization. Since we allow many insertions at
the same time instant we only have to update the “net” effect of these insertions.
However, our algorithms process one update at a time. The Page Coalescence
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Optimization (PCO), spares the index from “intermediate” results. If a page which
is created at time t takes some subsequent insertions also at t and overflows, after
the page is time split and key split, the page itself as well as the index record
pointing to it can be physically removed from the index. This optimization saves
significant space.

4.6 Complexity Analysis

For ease of discussion, we do not consider record merging and the page disposal.
Though these techniques improve performance, they are not required to meet the
worst-case bounds presented in the following. We first address the strong factor
f . Due to the strong condition, there are at most f · b alive records in a newly
created page. Note that although conceptually the MVSB-tree takes as input point
objects, each inserted entity is really a right-side-open and top-side-open rectangle.
That is why a page in the MVSB-tree has the notion of alive objects. To guarantee
a fan-out of at least two, f has to be greater than 3

b . Lemma 1 gives the maximal
number of pages created due to the split of an overflowing page.

Lemma 1. If a page overflows, time and possible key split generate at most d 1.5
f +

1
3e new pages.

Proof. The max number of alive records to be copied from the old page is
b + 1. Hence, the max number of newly generated pages is d b+1

f ·b e. Since f · b ≥ 3,
d b+1

f ·b e ≤ d 1
f + 1

3e ≤ d 1.5
f + 1

3e. Suppose the lemma holds for all child pages of
an index page p. If p overflows, the max number of alive records to be copied is
b + d 1.5

f + 1
3e − 1. Hence, the max number of newly generated pages is given by

d b+d 1.5
f + 1

3 e−1

f ·b e ≤ d 1
f + 1

3 · ( 1.5
f + 1

3 )e ≤ d 1.5
f + 1

3e.
After a page p is created and before it is copied, an insertion in p can add of new

records and logically deletion others. The number of additions and logical deletions
are bounded as shown in Lemma 2.

Lemma 2. An insertion in an alive page p which does not overflow introduces at
most d 1.5

f + 4
3e additions and at most 2 logical deletions.

Proof. The reason why there are at most 2 logical deletions is straightforward:
For a leaf page, there is only one record to be logically deleted. This is the partly-
covered record (if there is one) or the first fully-covered record (otherwise). For
an index page, there can be 0, 1 or 2 logical deletions: If the partly-covered child
page is time split, the partly-covered record is logically deleted; if there is any
fully-covered record, the first fully-covered one is also logically deleted.

We now focus on additions. For a leaf page, there can be 1 or 2 additions (1 for
a fully-covered record and 2 for a partly-covered one). Since 2 ≤ d 1.5

f + 4
3e, the

lemma is correct for a leaf page. For an index page, the possible additions arise
from splitting the first fully-covered record and from the time split (and then key
split) of the partly-covered child page. The maximum number of additions from
splitting the first fully-covered record is 1. The maximum number of additions from
splitting the partly-covered child page is d 1.5

f + 1
3e (Lemma 1). The total additions

is thus at most d 1.5
f + 4

3e.
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For any time t during the lifespan of a page p, it is guaranteed that there is at
least a certain number of records in p which are alive at t, as shown in Lemma 3.

Lemma 3. Given time t, any page p which is alive at t (except the root) contains
at least d f ·b

2 e records alive at t.

Proof. Let p1, p2, · · · , px be the longest successor path to p, i.e. ∀i ∈ [1, x −
1], pi+1 is a successor of pi and px = p. Since p is not a root page, somewhere in the
path there must be a key split. Let pi be the result of the last key split which occur
in the path. Suppose when pi was about to be generated, there were x · f · b − y
records, where x ≥ 2 and 0 ≤ y < f · b. Right after pi was generated, the number
of records in it is at least bx·f ·b−y

x c = bf · b− y
xc ≥ bf · b− f ·b−1

2 c = d f ·b
2 e.

Since in a page, the number of additions is no smaller than the number of deletions,
for any time t1 before pi.end, there are at least d f ·b

2 e records alive at t1. For all
j ∈ [i + 1, x], when pj is created, it has at least d f ·b

2 e records alive at t1 since there
were at least this many to be copied from pj−1 and there is no strong overflow. For
any later time before pj .end, the number of alive records does not decrease.

Suppose K is the number of different keys ever inserted into the MVSB-tree.
Lemma 4 gives the upper bound of the height of a MVSB-tree with regards to K.

Lemma 4. The upper bound of the height of any sub-tree in a MVSB-tree is
dlogd f·b

2 e (K + 1)e.
Proof. Given a tree in an MVSB-tree, consider each time instant t ∈ the lifespan

of the tree root. Since there are at most K different keys ever inserted in the tree,
there are at most K + 1 different leaf records which are alive at t. Since each leaf
page alive at t contains at least d f ·b

2 e records alive at t, there are at most K+1

d f·b
2 e

leaf pages alive at t. This also means that there are at most this many index
records which are alive at t and which point to these pages. Hence, at one level up,
there are at most K+1

d f·b
2 e2

index pages alive at t. This argument is true for all levels

until the root, where there is only one page alive at t. Hence, there are at most
dlogd f·b

2 e (K + 1)e+ 1 levels.

Suppose there are n insertions in a MVSB-tree. Theorems 3 states the worst-case
insertion cost, point query cost and the space complexity, respectively.

Theorem 3. For a MVSB-tree, the number of disk page accesses is O(logb K)
for an insertion and O(logb n) for a point query. The space complexity is O(n

b ·
logb K).

Proof. First, we examine the worst case insertion cost. An insertion operation
first traverses the tree from the latest root page to a leaf page and then traverses
back, requiring a constant number of I/Os per node along the path. Since the tree
height is dlogd f·b

2 e (K + 1)e = O(logb K), an insertion needs O(logb K) I/Os.
Second, we examine the cost of a point query. If the root page which covers the

query time instant is known, it takes O(logb K) I/Os to answer a point query in the
worst case. If root∗ is kept as a B+-tree, extra I/Os are needed to locate the root.
Since it takes at least O(b) insertions for a root page to overflow (Lemma 2)after
it has been generated, there are O(n/b) root pages. Hence, it takes O(logb n) to
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locate the root in the worst case. To sum up, a point query needs O(logb n) I/Os
in the worst case.

Last, we examine the worst case space complexity. We consider the total number
of occupied slots in all SB-trees embedded in the MVSB-tree (if a record is copied,
the two copies are considered to occupy different slots). We show that each insertion
creates O(logb K) new occupied slots. The occupied slots are partitioned into two
sets: in the first, occupied slots are created from copying existing occupied slots;
all others slots belong to the second set. Each insertion creates O(logb K) slots in
the second set (Lemma 2).

For the first set: We know that after a page is created, it takes at least O(b)
insertions for it to overflow (Lemma 2). Hence, when a page overflows, there were
at least O(b) insertions that went through this page after it was created. On the
other hand, the overflow introduces at most O(b) occupied slots in the first set. So
we can amortize the O(b) occupied slots to the O(b) insertions. Thus each insertion
creates O(1) amortized copied slot for each page it goes through. Since an insertion
goes through at most O(logb K) pages, an insertion creates O(logb K) slots in the
first set as well.

To sum up, each insertion creates O(logb K) occupied slots. So for n insertions
the total number of occupied slots is O(n · logb K). Now we consider the minimum
occupancy of a page. Each non-root page has at least d f ·b

2 e = O(b) occupied slots
(Lemma 3). Clearly, except for the last root, all the root nodes have a minimum
occupancy of O(b), too. Hence, the total number of pages occupied by the SB-trees
in an MVSB-tree is O(n

b · logb K).
Now we consider the space occupied by root∗, if it is kept in a B+-tree. Since

there can be at most O(n/b) roots, the space occupied by the B+-tree is O(n/b2).
To add up, the overall space of the MVSB-tree is O(n

b · logb K).

A corollary of Theorem 2 and 3 summarizes the performance of maintaining and
computing the range-temporal aggregates as follows.

Corollary 1. Using two MVSB-trees, a plain range-temporal aggregate query
is answered in O(logb n) I/Os. The update cost is O(logb K) while the space com-
plexity is O(n

b · logb K).

The O(logb n) in the range-temporal aggregate query time is due to the time
needed identifying the root of the appropriate SB-tree in the MVSB-tree graph. In
practice, this search can be even faster if all SB-tree roots ever created are kept
in an array in main-memory. In this case, query time is reduced to traversing the
appropriate SB-tree, i.e., O(logb K).

5. FUNCTIONAL RANGE-TEMPORAL AGGREGATES

Section 5.1 reduces the functional range-temporal aggregate problem to a special
case. Section 5.2 then proposes a solution to this special case, which in turn solves
the general case.

5.1 Reduction to Origin-Involved Special Cases

To support functional range-temporal aggregate computation, we only need to sup-
port the special case where the lower-left corner of the query rectangle is the lower-
left corner of the space (called origin).
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Fig. 23. Reduction from the functional range-temporal aggregate query to its origin-involved
special case.

Fig. 23(a) illustrates an arbitrary functional range-temporal aggregate query.
The query rectangle is shown as a shadowed box. The five temporal records are
shown as the horizontal line segments. There are two records intersecting the query
rectangle, and the functional range temporal aggregate query computes the total
value of them. The contribution of each record to the query, as illustrated by a thick
line segment, is the value of the record multiplied by the length of its intersection
with the query rectangle.

Fig. 23(b) illustrates another functional range-temporal aggregate query. The
query rectangle is cornered by the origin of space and the upper-right corner of the
previous shadowed query rectangle. This query is a special case since the query
rectangle contains the origin of key-time space. We thus call such a query the
origin-involved special case. Origin-involved queries only require specifying a single
point in key-time space: the upper-right corner of the query rectangle. As shown in
Fig. 23, a functional range temporal aggregate query can be reduced to the origin-
involved special case. To compute an arbitrary aggregate (Fig. 23(a)), we first
evaluate the origin-involved aggregate regarding the upper-right corner (Fig. 23(b)).
This query returns a larger value then desired, since the parts of records to the left
and below the original query rectangle are also counted. To subtract those to the left
of the query rectangle, we perform another origin-involved aggregate (Fig. 23(c)).
Similarly, we subtract those below the query rectangle (Fig. 23(d)). The records
both to the left and below the query rectangle (Fig. 23(e)) have been subtracted
twice, and thus need to be added back.

5.2 Origin-Involved Functional Range-Temporal Aggregates

We compute origin-involved functional aggregates as follows. Given a set of tempo-
ral records, for every point p in two-dimensional key-time space, the origin-involved
functional aggregate regarding p is a single value. We design an index structure
which logically maintains such values for all points in space. As the set of records
are dynamically updated, this hypothetical index is updated accordingly. To com-
pute an origin-involved aggregate, we perform a point query on this index. To
implement our methodology, it remains to decide: (1) how the updates of the set of
temporal records are reflected on the index; and (2) how to perform a point query.

We first discuss the transformation of updates. Note that we adhere to the
transaction time model, and updates to the original set thus only consist of in-
sertions and deletions. For instance, the record in Fig. 24(a) with key = k1,
timeinterval = [t1, t2], and value v corresponds to two updates: an insertion
at t1 and a deletion at t2. As Fig. 24(a) shows, the insertion t1, affects the hypo-
thetical origin-involved aggregation index as follows: The value of each point (k, t)
ACM Transactions on Database Systems, Vol. V, No. N, M 2007.



On Computing Temporal Aggregates with Range Predicates · 29

key

time

v

t t t

k

k

1 2

1

+ v*(t−t  )1

key

time1 2

1

t t

k

k

v

− v*(t−t  )2

t

(a) Insertion (b) Deletion

Fig. 24. Effect of the insertion/deletion of a temporal record.

in [k1, maxkey)× [t1, maxtime) is increased by

v ∗ (t− t1) = v ∗ t− v ∗ t1.

Similarly, as Fig. 24(b) shows, deleting the temporal record at t2, affects the
index as follows: The value of each point (k, t) in [k1, maxkey) × [t2, maxtime)
is decreased by v ∗ (t− t2). Or equivalently, increased by

−v ∗ t + v ∗ t2.

Such updates have exactly the same format as the update of a MVSB-tree. The
only difference is that in the MVSB-tree presented in Section 4, each update takes
a constant value, while here, each update takes a linear function over time. Such a
function can be stored in constant space, and can be added with another function,
by storing and adding the coefficients, respectively. Therefore we use the MVSB-
tree to compute the origin-involved functional temporal aggregates, with a slight
modification that every aggregated “value” that is stored in the index is a pair of
values instead of one.

2 3 4 5 6 7 8 9 10 11 12 time1

20*t−20

617−519−6136

617−373−2177

951−827−2838

951−827−4305

964−888−3277

10

20

−20*t+80

10*t−20

Fig. 25. An origin-involved functional range-temporal aggregate. The dominance-sum is 10∗t+40,
e.g., 90 at t = 5.

Fig. 25 shows the functions associated with three end points of objects, the points
dominated by the upper-right corner of the shadowed query region. All end points
are inserted to an MVSB-tree, where the “value” associated with each end point
is the associated function, or the two coefficients of the function. For instance, the
three end points are associated with “values” (20, -20), (-20, 80), and (10, -20).

Such MVSB-trees allow evaluating functional range-temporal aggregates. Intu-
itively, the two phone call records, with values 10 & 20 per unit of time, respectively,
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both lasted three units of time in the query region. Therefore the functional range-
temporal aggregate should be 10 ∗ 3 + 20 ∗ 3 = 90. The MVSB-tree computes the
dominance-sum as follows. Since the upper-right corner of the query region dom-
inates three end points, the dominance-sum is the “total value” of (20, -20), (-20,
80), and (10, -20). This total value is (20 − 20 + 10,−20 + 80 − 20) = (10, 40),
which corresponds to a function 10t + 40. At time 5, the function evaluates to be
10 ∗ 5 + 40 = 90, which matches our intuition.

5.3 The Overall Picture

del (end, k): v

MVSB−tree
Functional

MVSB−tree
Functional

DS(upperright)
DS(lowerright)

A query rectangle
upperleft

lowerleft lowerright

upperright

DS(upperleft)
DS(lowerleft)

with "value"
(v, −v*start)

insert (start, k) 
with "value"
(−v, v*end)

insert (end, k) 

(b) Query(a) Update

Operations in the base table:
ins (start, k): v

Fig. 26. Functional range-temporal aggregate.

The insertion and query schemes supporting the functional range temporal ag-
gregate query, utilizing the MVSB-tree as basic building block, are illustrated in
Fig. 26. In contrast to the plain range temporal aggregate case, only a single MVSB-
tree is needed. Both the start point and end point of a record in the base table are
inserted to this MVSB-tree. As illustrated in Fig. 23, a functional range-temporal
aggregate is computed as:

DS(upperright)−DS(upperleft)−DS(lowerright) + DS(lowerleft)

Each dominance-sum DS(·) is first computed as a value function and then evaluated
for the time of the query.

5.4 Extension to Support Value Functions

So far we discussed the case when the value for every record is a constant. In the
functional aggregate case, we actually treated it as a constant function. In general, a
record may have a non-constant value function. Our technique still works, provided
that some conditions hold.

To insert (at t1) a record with key=k1, time interval=[t1, t2], and value function=f(t),
the value of each point (k, t) in [k1, maxkey)× [t1, maxtime) should be increased
by

h1(t) =
∫ t

t1

f(x)dx
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And to delete (at t2) the record, the value of each point (k, t) in [k1, maxkey)×
[t2, maxtime) should be decreased by

h2(t) =
∫ t

t2

f(x)dx

An arbitrary value function may not suit the need for functional aggregate. For
instance, a function, which cannot be represented in constant space, or whose in-
tegral cannot be computed, does not satisfy our needs. We hereby propose six
requirements as guidelines of choosing value functions which suit this need.

(1) The function should have a fixed format.
(2) The function should be represented in constant space.
(3) The summation of two functions should be easily performed, and the result

should have the same format.
(4) The negation of the function should be easily performed, and the result should

have the same format.
(5) The function should have efficient evaluation.
(6) The integral of the function should be able to be computed efficiently and

satisfy the above five requirements.

Note that if f(x) is a polynomial function of rank a, function h1(t), h2(t) are
polynomial functions of rank a+1. For example, if f(x) = 0.5x− 0.5, then h1(t) =∫ t

t1
(0.5x − 0.5)dx = 0.25t2 − 0.5t + (0.5t1 − 0.25t21). Such functions have fixed

format (c1 ∗ t2 + c2 ∗ t + c3), where c1, c2, c3 are constants), can be represented
in constant space (by storing their coefficients), can be added up or negated (by
manipulating their coefficients), and can be evaluated efficiently. This means our
solution for the continuous case of the functional aggregate works for polynomial
temporal record functions, which is a rather general class of functions, covering
many practical applications.

6. EXPERIMENTAL EVALUATION

This section evaluates the performance of the MVSB-tree based approaches for the
plain and functional range-temporal aggregate query. The experimental setup is
given in Section 6.1. Section 6.2 compares the query performance of MVSB-tree
based approaches against the näıve approach of retrieving the records satisfying
the range-interval condition and aggregating their values on the fly. The range-
interval selection in the näıve approach is performed by querying a traditional
temporal index, the MVBT [Becker et al. 1996]. Section 6.4 evaluates benefits of
our three optimization techniques. Finally, Section 6.5 investigates the performance
of functional temporal aggregates.

6.1 Experimental Setup

The algorithms were all implemented in C++, using GNU compilers. Experiments
are performed on a Dell Pentium IV 3.2GHz PC with 1GB memory. Unless stated
otherwise, they use the following default parameters: a page size of 4KB, an LRU
buffer with 64 pages, and a strong factor f = 0.9.
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For query performance, we measure the average execution time of 100 randomly
generated query rectangles with fixed rectangle shape and size. The shape of a
rectangle is described by the R/I ratio, where R is the length of the query key
range divided by the length of the key space and I is the length of the query time
interval divided by the length of the time space. The query rectangle size (QRS)
is described by the percentage of the area of the query rectangle in key-time space.
The default value of R/I ratio is 1, and the default value of QRS is 1%.

The dataset in the experiments contains 1 million time intervals generated using
the Time-IT software [Kline and Soo 1998]. Time space equals [1, 108). Note that
the Time-IT software does not generate record keys. We add keys by first gener-
ating 10,000 random keys in the key space [1, 106), then assigning time intervals
to these keys in a round-robin fashion. Each key corresponds to 100 intervals. The
key, start, end, value attributes of each record are all 4 bytes long. After the tempo-
ral records were generated, the database was transformed such that each temporal
record corresponds to two operations: an insertion and a (logical) deletion. These
operations are applied in increasing time order to initially empty MVSB-trees.

6.2 Comparison with the Näıve Approach

This section compares the generation time, index size, and query performance of
three algorithms:

—Näıve: the näıve approach of using a range-interval selection query on an MVBT
index to find the actual records and then aggregate their values on the fly.

—Six: the MVSB-tree-based approach using the old reduction technique, reducing
a plain range-temporal aggregate query to six LKLT and/or LKST queries.

—Four: the MVSB-tree-based approach using the new reduction technique, which
reduces a plain range-temporal aggregate query to four dominance-sum queries.

The goals of comparing these three algorithms are two-fold. First, we show how
much faster our proposed approach (based on specialized aggregate index) is over
the näıve approach (based on object retrievals). Second, compare the two versions
of our new approach, using the six-query and four-query reduction techniques.

(a) Size (b) Cost

Fig. 27. Index size and construction cost.

First, we compare the index size and generation cost of the three approaches. As
Fig. 27 shows, the MVSB-tree-based solution occupies more space and takes longer
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to generate. This is to be expected, since the both MVSB-tree based approaches
use two MVSB-trees, and each MVSB-tree has a O(logb K) overhead in worst-case
asymptotic space cost.

Comparing the two MVSB-tree-based solutions, Four is more efficient both in
space cost and in construction cost. The reason is that Four performs two updates
per time interval, while Six executes three.

(a) I/O cost (b) Elapsed time

Fig. 28. Query performance comparison, varying QRS.

Fig. 28(a) shows that both versions of our approach are multiple orders of mag-
nitude faster than the näıve approach. Note that the Y-axis is in logarithmic scale.
The larger the QRS is, the more advantageous our approach becomes. This is to
be expected, since the MVSB-tree-based query algorithms have logarithmic com-
plexity, independent to the QRS, while the näıve approach has linear complexity.

To better see the difference between Six and Four, Fig. 28(b) focuses on compar-
ing these two new approaches. Also, the figure displays the elapsed time (versus
#I/Os) in regular scale (versus log scale). Between these two versions, Four is more
efficient than Six. The reason is that Four answers a plain range-temporal aggre-
gate query by four dominance-sum queries, and Six answers a plain range-temporal
aggregate query by six dominance-sum queries.

(a) buffer size (b) R/I ratio

Fig. 29. Query performance for varying buffer size and R/I ratio.

Fig. 29(a) and (b) compares the query performance of the three algorithms, for
varying the buffer size and R/I ratio; QRS remains at the default value (1% of the
key-time space). In both cases Four is slightly more efficient than Six, and both
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are clearly superior to the näıve approach. In the remaining sections, we focus on
evaluating the Four algorithm alone.

6.3 Scale up

In order to study how the proposed schemes scale up with larger data sets, this
section uses a larger dataset. Instead of 1 million records, this section uses 10
million records, again generated using the Time-IT software [Kline and Soo 1998].
There are 10,000 keys and each key corresponds to 1000 intervals.

(a) Size (b) Cost

Fig. 30. Index size and construction cost using the 10-million-record dataset.

(a) I/O cost (b) Elapsed time

Fig. 31. Query performance comparison, varying QRS, using the 10-million-record dataset.

Fig. 30 compares the index size and construction cost. Fig. 31 compares the
query performance. Compared with their counterparts using the 1-million-record
dataset (Fig. 27 and Fig. 28), the trends and conclusions are similar. The index
sizes and construction cost are about 10 times larger. The query cost of the MVBT
is about 10 times larger, too. An interesting observation is that the query cost of
the MVSB-tree-based approaches is NOT 10 times larger! In fact the cost only
slightly increased. The reason is that the MVSB-tree has a query cost logarithmic
to the number of distinct keys, while the two datasets have the same number of
distinct keys.
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6.4 Effect of the Optimizations

This section evaluates the benefits of our three optimization techniques, namely:

—LSO: Logical Splitting.
—RCO: Record Coalescence.
—PCO: Page Coalescence.

(a) Size (b) Cost

Fig. 32. Impact on index size and construction cost.

Fig. 33. Impact on query cost.

Fig. 32(a), Fig. 32(b), and Fig. 33 demonstrate the impact the optimization
techniques have on the index size, construction cost, and the query performance.
Here Four stands for the same algorithm we used in the previous section. That is,
the MVSB-tree-based index solution for the plain range-temporal aggregate query,
utilizing the four query reduction technique. NoLSO denotes Four without LSO,
and NoRCO denotes Four without RCO. Finally NoPCO is Four without PCO.

Clearly LSO is the most important of the three optimization techniques. Recall
that the LSO enables the update algorithm to split a single entry in each page along
the insertion path. Without it, in every page along the insertion path multiple
entries need to split. The LSO optimization hence brings enormous savings in
index size and update cost. With a more compact index, the query cost of the
solution with LSO is also noticeably smaller. The other two optimizations also
show significant impact, but certainly not as big.
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6.5 Functional Range Temporal Aggregate Query

(a) Index size (b) Construction cost (c) Query cost

Fig. 34. Functional temporal aggregate, compared to using the plain temporal aggregate.

Fig. 34 shows performance results of the functional temporal aggregate solution.
As baseline for comparison, we use the data of the plain temporal aggregate solution.
There are two differences in the index utilization between the two MVSB-tree-based
indices for the functional case and the plain case.

(1) In the functional case, a value associated with an interval record and an ag-
gregated value associated with an index entry are both two numbers instead of
one. The two numbers are the coefficients of the corresponding (aggregated)
value function.

(2) In the functional case, a single MVSB-tree is needed instead of two. Recall
that the plain case keeps two MVSB-trees, one corresponding to start times of
records, the other corresponding to end times. A single record generates two
updates, one in each MVSB-tree. In the functional case, a single MVSB-tree
is maintained. A record still corresponds to two updates, both in the same
MVSB-tree.

The first difference indicates that the functional case should occupy more space.
The second however suggests that the functional case may require less space. This
is because maintaining an MVSB-tree index has some overhead, e.g. the root
structure, and the functional case saves on such overhead by maintaining one index
instead of two. The net effect, as shown in Fig. 34(a), is that the functional case
uses little more space than the plain case. Consequently, update (Fig. 34(a)) and
query (Fig. 34(b)) are also a little more expensive. In all cases, the functional
solution is rather cheap, making it a reasonable extension of the plain case.

7. CONCLUSIONS AND FUTURE WORK

Temporal aggregates have become predominant operators in analyzing historical
data. This paper examined temporal aggregate queries in the presence of key-range
predicates. Such queries allow warehouse managers to focus on tuples grouped by
some key range over a given time interval. We considered both plain and functional
range-temporal aggregates. These problems are reduced to dominance-sum queries.
ACM Transactions on Database Systems, Vol. V, No. N, M 2007.



On Computing Temporal Aggregates with Range Predicates · 37

We proposed the Multiversion SB-Tree (MVSB-tree) for incrementally maintaining
and efficiently computing the dominance-sum queries and in turn range-temporal
aggregate queries. The MVSB-tree has very fast (logarithmic) query time and
update time, at the expense of a small space overhead. The benefits of our solution
are verified through an experimental evaluation.

One future direction is to try to prove the MVSB-tree is asymptotically optimal
if exact answers are required. For large-scale applications where an index with non-
linear space is not acceptable, one should explore approximate solutions preferably
allowing the users to control the tradeoff between index size and query accuracy.
Finally, it is interesting and challenging to relax the transaction-time model and
propose efficient index solutions.
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