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ABSTRACT
A fundamental building block of many data mining and analysis ap-
proaches is density estimation as it provides a comprehensive statis-
tical model of a data distribution. For that reason, its application to
transient data streams is highly desirable. A convenient, nonpara-
metric method for density estimation utilizes kernels. However,
its computational complexity collides with the rigid processing re-
quirements of data streams. In this work, we present a new ap-
proach to this problem that combines linear processing cost with a
constant amount of allocated memory. Our approach also supports
a dynamic memory adaptation to changing system resources.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Nonparametric statistics

General Terms
Algorithms, Performance
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1. INTRODUCTION
The mining and analysis of transient data streams has come to the

fore in recent years [3]. To be applicable to data streams, a mining
technique has to meet stringent processing requirements [2].

Taking those requirements into account, we address in this work
the adaptation of a fundamental building block of many analysis
techniques, namely density estimation, to the data stream scenario.
Density estimation reveals the unknown probability density func-
tion of a distribution, given solely a representative sample of obser-
vations. With a well-defined density estimate at hand, a variety of
mining and analysis issues can be addressed [5], [4].

In most real-world applications over streams, we have no a pri-
ori knowledge about the stream. Hence, the class ofnonparamet-
ric density estimation approaches is very appealing as they make
no assumptions on the unknown density function; ”the data speak
strictly for themselves” [5]. A theoretically well-founded and also
practically approved approach for nonparametric density estima-
tion utilizes kernels. Kernel-based density estimators can approxi-
mateanydistribution arbitrarily good (in probabilistic terms), pro-
vided that the associated sample is sufficiently large [5]. Hence,
an adaptation of kernel density estimation to data streams seems to
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be a highly promising approach. However, the high computational
cost of kernel density estimators is a severe obstacle; their mem-
ory allocation is linear in the sample size, accompanied by linear
evaluation cost. Since these facts violate the given processing re-
quirements, we can not directly build kernel density estimators over
data streams.

In this paper, we present resource-aware kernel density estima-
tors over streaming data that fully comply with these processing
requirements. We build on the general idea of M-Kernels [1], a
previous approach for kernel density estimation over data streams.
Specifically, we solve crucial deficiencies of M-Kernels concerning
their parameter settings and essential processing steps. For the core
operation of the algorithm, the merge of two adjacent kernels, we
introduce a new optimal method based on a cost measure which is
inexpensive to compute. An experimental study confirmed that our
estimators perform well for synthetic and real-world data streams;
they outperformed M-Kernels with respect to accuracy and main-
tenance cost.

2. PRELIMINARIES

2.1 Data Stream Model
A one-dimensional data stream consists of an unbounded se-

quenceX1, X2, ... of numbers withXi ∈ R for i ∈ N. Except
where otherwise stated, we assume that the stream represents at
each time instant a sample with independent and identically distrib-
uted (iid) observations of an unknown continuous random variable
X. The premise of independence of two arbitrary stream elements
is reasonable for most applications as data sources typically send
their elements autonomously, e.g. traffic sensors. The premise of
an identical distribution is weakened in Section 3.

2.2 Kernel Density Estimation
One of the core concepts in mathematical statistics is theproba-

bility density function (pdf). Essentially, each continuous random
variableX has a unique pdff . As f provides a comprehensive
summary ofX, its knowledge is crucial to the analysis [4].

In real-world scenarios, however, neitherX nor its pdf are known.
Typically, we only have observations ofX in form of a sample
X1, ..., Xn. Density estimation provides suitable methods to esti-
mate a pdf using a sample as major ingredient. We particularly fo-
cus on kernel density estimation [5], a nonparametric approach that
solely bases on the sample. Akernel density estimator (KDE)
with kernel function K andbandwidth h(n) is defined as
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for iid observationsX1, ..., Xn drawn from a continuous random



variableX, whose pdff is unknown. Generally, the setting of the
bandwidth is crucial to the quality of a KDE. To guarantee proba-
bilistic convergence, the bandwidth has to decrease with the sample
size [5]. Contrary to the bandwidth, the setting of the kernel func-
tion is minor.

Since we assume a data stream to be aniid sample of an un-
known random variableX, the adaptation of kernel density esti-
mation seems straightforward. However, the computational cost of
KDEs collides with the processing requirements of streams: they
request memory linear in the sample size, i.e., in the size of the
stream. Furthermore, each processed stream element must be ac-
cessible anytime because common bandwidth strategies require ac-
cess to the whole sample.

3. OUR APPROACH
In the following, we present our approach to KDEs over stream-

ing data, starting from (1) as point of origin. Letn be the current
number of processed stream elements.

3.1 Parameter Settings
As underlying kernel function, we use the Epanechnikow ker-

nel [5]. Not only is this kernel asymptotically optimal among all
kernels, it is also simple and has a bounded support.

Concerning the bandwidth, the vital parameter of a KDE, we use
thenormal scale rule[5]. It defines the bandwidth ash(n) = 1.06·
σ(n) · n−

1
5 for a sample withn elements and standard deviation

σ(n). Sinceσ(n) can be estimated in a single pass, we can apply
this rule to streaming data.

3.2 Kernel Entries and their Processing
Kernel entries are the main building blocks of our KDEs. A

kernel entry 〈X(n)
i , c
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i 〉 consists of a meanX(n)
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weightc(n)

i , andL2costs
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i , the costs of a merge with its ”neigh-

bor”. As we are only allowed to allocate a constant amount of
memory [2], we confine the maximum number of kernel entries to
a constantm. We utilize the entirety of kernel entries to build a
KDE:
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Note that each kernel entry has weight1/n in (2). By using expo-
nentially decreasing weights for older entries instead, we can em-
phasize recent data. Thus, we can also cope with evolving streams.

Let us now discuss the processing of kernel entries during run-
time. For a new stream elementXn+1, we build a new kernel entry
〈Xn+1, 1, L2costs(n+1)〉, providedXn+1 is not equal to the mean
of an existing kernel entry. If that is the case, we only increment
the weight of this entry.

If the total number of kernel entries exceedsm, we determine
and merge the adjacent kernel entries〈X(n)
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i 〉 and
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Due to the simple form of the Epanechnikow kernel, (3) can be
converted into a closed formula. We determine for each pair of
adjacent kernel entries their merge kernel and set their merge costs
asL2costs(X∗). If a merge is required, we choose the pair with
overallminimum merge costs.

Generally, our KDEs can flexibly adapt to a changingm. If m is
increased, we build a separate kernel entry for each new element.
If m is decreased, we merge kernel entries sufficiently often.

3.3 Comparison to M-Kernels
The processing of M-Kernels [1] is similar to that sketched above.

However, some of their settings severely limit their applicability.
First, their use of the Gaussian kernel as underlying kernel function
exacerbates an efficient evaluation due to its unbounded support.
Second, the proposed bandwidth strategy does not ensure band-
widths decreasing with the sample size; but this is a fundamental
prerequisite for the probabilistic convergence of KDEs. Third, the
mean of the merge kernel is numerically approximated which in-
troduces additional computational effort and less exact values.

4. EXPERIMENTAL EVALUATION
We scrutinized our approach in an experimental study with syn-

thetic as well as real-world data. Concerning the estimation quality,
our KDEs have proved to be very robust. For all examined streams,
their estimation error with respect to the best ”offline” KDE rapidly
decreased for an increasing number of processed elements. In com-
parison to, M-Kernels were clearly inferior; their estimation error
mostly remained constant in the average. M-Kernels were also in-
ferior in terms of processing time. In another experiment, we ex-
amined the resource-awareness of our KDEs by abruptly varying
their maximum number of kernel entries during runtime. The ex-
perimental results indicate that our KDEs reacted very flexible and
recovered fast, even after significant reductions ofm.

5. CONCLUSIONS
In this work, we tackled kernel density estimation over stream-

ing data. Our approach utilizes simple building blocks, namely
kernel entries, to build KDEs anytime while processing the stream.
In comparison to M-Kernels, a previous kernel method for data
streams, our KDEs were clearly superior as our experimental study
revealed. In future work, we aim at generalizing our approach to
multidimensional data streams. We will also couple our KDEs with
change point detection methods from the area of mathematical sta-
tistics in order to locate and react to concept drifts in the stream.
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