
Adaptive Wavelet Density Estimators over Data Streams

Christoph Heinz Bernhard Seeger
Department of Mathematics and Computer Science

University of Marburg
{heinzch, seeger}@mathematik.uni-marburg.de

Abstract

A variety of scientific and commercial applications re-
quires an immediate analysis of transient data streams.
Many approaches for analyzing data share the property that
an estimation of the underlying data distribution is used as
a fundamental building block. To estimate the density of a
continuous data distribution, wavelet density estimation, a
technique from the area of nonparametric statistics, is very
appealing as it is theoretically well-founded and practically
approved. For that reason, its application to data streams
is highly promising; it provides a convenient way to ana-
lyze the characteristics of a stream. However, the heavy
computational cost of wavelet density estimators renders
their direct application to the streaming scenario impos-
sible. In this work, we tackle this problem and present a
novel approach to adaptive wavelet density estimators over
data streams. Not only do our estimators meet the rigid
processing requirements for data streams, they also adapt
to changing system resources in a well-defined manner. A
thorough experimental evaluation demonstrates the efficacy
of our wavelet density estimators and shows their superi-
ority to competing kernel- and histogram-based estimators.

1 Introduction

The exploration and analysis of data streams is a crucial
prerequisite in many application scenarios, e.g., traffic man-
agement, monitoring of vital features. In order to keep pace
with a data stream, the corresponding analysis techniques
have to meet restrictive processing requirements [7], e.g.,
each element can only be processed once and the amount of
available memory is bounded.

In this work, we concentrate on a building block of many
data analysis approaches, namely the estimation of contin-
uous densities. Density estimation captures an unknown
continuous distribution by estimating its probability density
function. The resulting density estimator can be exploited

to gain insight into essence and structure of the data; it can
be utilized for all kinds of analysis tasks, e.g., computa-
tion of summary measures, outlier detection [18]. For that
reason, the application of density estimation to real-valued
data streams is highly promising. To estimate the density
of an unknown continuous distribution, mathematical sta-
tistics provides a plethora of estimation techniques among
which the nonparametric ones are of particular interest as
they solely base on the sample. To cite [11]: ”a well-known
benefit of nonparametric methods is their ability to achieve
estimation optimality for ANY input distribution as more
data are observed”. Among the most popular nonparamet-
ric estimation techniques are kernel density estimators and
histograms [17]. In comparison to the latter two techniques,
density estimators based on wavelets [8] are superior in
terms of a higher convergence rate and a better resolution of
irregular densities. ”For data analytic purposes with small
to moderate data size a kernel estimate may be preferred for
its simplicity and wide distribution. For finer local analy-
sis and good asymptotic properties the wavelet estimator is
certainly the method to be chosen.”[13]. However, the com-
putational complexity of wavelet density estimators makes
their direct application to data streams impossible.

In this work, we address this problem and develop
wavelet density estimators that can be computed in an on-
line fashion over a data stream while allocating only a con-
stant amount of memory. To the best of our knowledge, this
is the first adaptation of wavelet density estimators to data
streams. Basically, their computation relies on a framework
for maintaining nonparametric estimators over data streams
[2]. The main idea is to process the stream in a block-wise
manner, where each data block is associated with a sepa-
rate wavelet density estimator. While processing the stream,
we successively merge those block estimators, which gives
us an overall estimator for the already processed stream.
In [14], we already presented an early stage of this work,
which only gave a rough sketch.

In order to scrutinize our wavelet density estimators,
we conducted a broad experimental study, including the
comparison with competitive density estimation techniques.

This study substantiated the good approximation properties
of our estimators as well as their superiority to dynamic his-
tograms [12] and M-Kernels [3] in terms of estimation ac-
curacy and processing time.

The paper is organized as follows. Section 2 introduces
the problem of density estimation over data streams. We
give a brief review of wavelets and wavelet density estima-
tion in Section 3. Section 4 sketches the aforementioned
framework and Section 5 discusses its application with
wavelet density estimators. Section 6 gives an overview
of related work. The results of our experimental evalua-
tion are presented in Section 7. Finally, we conclude with a
summary and an outlook on future work in Section 8.

2 The Problem

Let a data stream be an unbounded sequence of real-
valued elements X1, X2, ... with Xi ∈ R. Except where
otherwise stated, we consider one-dimensional streams. We
assume that the elements constitute at each time instant an
iid-sample (independent and identically distributed obser-
vations) of a random variable X with an unknown den-
sity f . The assumption of independence between two
stream elements is justifiable as sources that generate data
streams typically send their elements autonomously. It is
worth mentioning that these are the only assumptions on
the stream.

With respect to those relatively weak assumptions, the
core question of this work is how to compute wavelet den-
sity estimators over data streams in compliance with the
rigid processing requirements for streams [7, 2]? Before we
go into the details of how we addressed this question, let us
first give a brief overview of wavelets and wavelet density
estimation.

3 An Introduction to Wavelets

For the sake of simplicity, we concentrate in the follow-
ing on L2(R), the space of all square-integrable functions
on R. Its inner product is defined as 〈f, g〉 =

∫
fg dx.

Assume a wavelet function ψ defined on R is given. For
j, k ∈ Z let ψj,k(x) := 2j/2ψ(2jx − k) with dilation (or
resolution) index j and translation index k. The dilation
squeezes or expands the wavelet, while the translation shifts
it along the x-axis. A remarkable property of wavelets is
that the entirety of those versions ψj,k, j, k ∈ Z of ψ con-
stitutes an orthonormal basis of L2(R). Among the most
popular wavelets are Haar wavelets as they are simple and
Daubechies wavelets [13] as they combine a compact sup-
port with different degrees of smoothness.

A fundamental principle of wavelets is the multireso-
lution analysis (MRA), which provides views at different

resolutions on a function. The higher the resolution, the
more details of a function are resolved. Formally, the dif-
ferent resolutions correspond to an increasing sequence of
subspaces (Vj)j∈N with ... ⊂ Vj−1 ⊂ Vj ⊂ Vj+1 ⊂ ...,

whose union is
∞⋃

j=−∞
Vj = L2(R). Each Vj can be rep-

resented as Vj−1 plus its orthogonal complement Wj−1,
i. e. Vj = Vj−1 ⊕Wj−1. While Vj is generated by trans-
lations {φj,k : k ∈ Z} of a scaling function φ, the detail
space Wj is generated by translations {ψj,k : k ∈ Z} of
the wavelet ψj .

By means of these subspaces, we can decompose L2(R)
as follows

L2(R) =
⊕
j∈Z

Wj = Vj0 ⊕
⊕
j≥j0

Wj . (1)

Hence, each function f ∈ L2(R) can be represented in its
wavelet series expansion

f(x) =
∑

j,k∈Z
dj,kψj,k(x) (2)

=
∑
k∈Z

cj0,kφj0,k(x) +
∞∑

j=j0

∑
k∈Z

dj,kψj,k(x) (3)

with scaling coefficients cj0,k = 〈f, φj0,k〉 and wavelet co-
efficients dj,k = 〈f, ψj,k〉. Generally, the subspaces Vj rep-
resent coarse, global features of f and their complements
Wj the local details. As we will see, the wavelet series
expansion is of utmost importance for the computation of
wavelet density estimators.

Another important concept of wavelets is the discrete
wavelet transform (DWT), which offers a hierarchical de-
composition of a function. Given the scaling coefficients of
a function at resolution j1, the DWT computes scaling and
wavelet coefficients of lower resolutions. This offers a sim-
ple and efficient method to compress a function in case its
number of coefficients exceeds a preset maximum number.
We apply the DWT and decompose the scaling coefficients
of the function into scaling and wavelet coefficients of lower
resolutions. To reduce the coefficient number, we simply
discard the least relevant coefficients. Since the wavelet co-
efficients describe the local details, a convenient approach
is to discard the wavelet coefficients with lowest absolute
value. This strategy is also theoretically well-founded as it
ensures a minimum compression error [5].

3.1 Wavelet Density Estimation

The starting point for a wavelet density estimator
(WDE) is the previously discussed wavelet series expan-
sion - see equation (2) - of the unknown density f . The
basic idea is to estimate the unknown scaling and wavelet

2

coefficients of f by utilizing the sample points X1, ..., Xn.
As f is a probability density function, it holds

cj,k = 〈f, φj,k〉 =
∫
f(x)φj,k(x)dx = E(φj,k(X)), (4)

dj,k = 〈f, ψj,k〉 =
∫
f(x)ψj,k(x)dx = E(ψj,k(X)). (5)

The estimation of these expectation values with the help
of the sample values delivers an estimate of the coefficients:

ĉj,k =
1
n

n∑
i=1

φj,k(Xi), d̂j,k =
1
n

n∑
i=1

ψj,k(Xi). (6)

The combination of these empirical coefficients with the
wavelet series expansion of f delivers an initial WDE

f̂(x) =
∑
k∈Z

ĉj0,kφj0,k(x) +
∞∑

j=j0

∑
k∈Z

d̂j,kψj,k(x). (7)

Since the number of coefficients in equation (7) may be in-
finite, we must truncate the series expansion of f [13]. The
crucial step in this context is the choice of the empirical
coefficients to keep. If not enough coefficients are kept,
the resulting WDE can be oversmoothed and may hide lo-
cal features. If too many coefficients are kept, the resulting
WDE can be undersmoothed and may exhibit spurious arti-
facts. The different types of WDEs distinguish themselves
by their strategy for choosing the empirical coefficients. In
the following, we focus on two well-established WDE types
[8, 13]: linear WDEs and thresholded WDEs.

A linear WDE estimates the projection of f in Vjlin
1

with
jlin
1 a suitably chosen resolution. Hence, given the empiri-

cal coefficients of this resolution, a linear WDE is computed
via

f̂(x) =
∑
k∈Z

ĉjlin
1 ,kφjlin

1 ,k(x). (8)

The quality of a linear WDE fundamentally depends on
an appropriate setting of jlin

1 . As the optimal jlin
1 suf-

fers from the drawback that it depends on the unknown
regularity properties of f , [58] proposes to use jlin

1 =
(log2 n)/3 − 2 − log2 σ as an approximate solution. More
advanced strategies for the setting of jlin

1 exist [13], but
their computational complexity renders an application in the
data stream scenario difficult. In general, linear WDEs are
a convenient technique for the estimation of smooth densi-
ties. However, for the case of densities with heterogeneous
smoothness properties, thresholded wavelet density estima-
tors are preferable.

The basic idea of thresholded WDEs is to perform an
adaptive fit to the local smoothness of the density. In their
seminal work [8], Donoho et al. introduced a nonlinear

WDE which applies a thresholding procedure to its empiri-
cal wavelet coefficients:

f̂(x) =
∑
k∈Z

ĉjthr
0 ,kφjthr

0 ,k(x)+
jthr
1∑

j=jthr
0

∑
k∈Z

d̃j,kψj,k(x) (9)

where d̃j,k denotes a thresholded wavelet coefficient and
jthr
0 , jthr

1 are suitably chosen resolutions. By a careful se-
lection of empirical wavelet coefficients, local features of f
like discontinuities or sharp cusps shall be detected without
introducing spurious local artifacts. An appropriate setting
of the threshold is crucial since it dictates which local de-
tails are kept. In [8], the authors proposed two thresholding
strategies: soft thresholding and hard thresholding. Soft
thresholding

d̃j,k =


d̂j,k − λj , d̂j,k > λj

0, |d̂j,k| ≤ λj

d̂j,k + λj , d̂j,k < −λj

(10)

shrinks large coefficients. Hard thresholding sets coeffi-
cients with absolute value smaller than λj to zero:

d̃j,k =

{
d̂j,k, |d̂j,k| > λj

0, otherwise.
(11)

While soft thresholding guarantees better mean squared er-
ror properties, hard thresholding keeps the visual appear-
ance of jumps and peaks [8]. Overall, a thresholded WDE
has the following parameters: the resolutions jthr

0 , jthr
1

and the thresholds λj . According to [20], jthr
0 = d log2 n

2r−1 e
(with r the regularity of the wavelet) and jthr

1 = blog2 n−
log2(log n)c are reasonable resolution settings. Concern-
ing the level-dependent threshold λj , [13] proposes to use a
multiple of max

k∈Z
|d̂j,k|.

For practical purposes, wavelets with bounded support
are advisable as they ensure a finite number of coefficients.
Given the corresponding resolution jlin

1 (or jthr
1), we can

compute the minimum and maximum indexes kmin, kmax

of the non-zero empirical scaling coefficients at this reso-
lution, i.e., the number of empirical scaling coefficients to
compute is kmax −kmin +1. With respect to the resolution
settings of linear and thresholded WDEs, kmin and kmax

are linear in the sample size.
Generally, a closer look at the computation of WDEs

reveals that we can not directly compute them over data
streams. The reason is that their parameters depend on the
sample size, which continuously increases in our case. As a
result, the resolutions jlin

1 , jthr
1 will change while process-

ing the stream. A resolution change in turn necessitates
the recomputation of all empirical coefficients. A recom-
putation, however, requires access to all already processed
stream elements, a fact that violates the one-pass paradigm
postulated in data stream processing.

3

4 Maintaining Nonparametric Estimators
over Data Streams

In [2], we presented a framework for maintaining non-
parametric estimators over data streams. In this work, we
exploit this framework to compute WDEs over data streams.
The basic idea of the framework is to partition the data
stream into disjoint data blocks consisting of b elements.
Each of those blocks is associated with a separate block es-
timator f̂i. After we have built a new block estimator, we
determine the overall estimator ĝ for the already processed
stream as convex linear combination of the block estima-
tors, i.e., ĝ(x) =

m∑
i=1

ωi f̂i(x) with 0 ≤ ωi ≤ 1, i =

1, ...,m and
m∑

i=1

ωi = 1. For each weighting sequence

(ωi)i≥1, we can determine an equivalent sequence (ω̃i)i≥1

that allows us to compute the overall estimator online with-
out accessing all previous block estimators:

ĝi(x) =
{

f̂1(x), i = 1
(1 − ω̃i)ĝi−1(x) + ω̃if̂i(x), i ≥ 2

(12)

with 0 ≤ ω̃i ≤ 1, i ≥ 1 and ω̃1 = 1. In order to com-
ply with the requirement of a constant amount of allocat-
able memory, the overall estimator is compressed after each
update. For more details about this framework and the in-
terplay of its components, we refer to [2].

The relevant question for this work is how to use this
framework. Essentially, we have to define the following
steps with respect to the general idea sketched above:

• Computation of a block estimator: A separate esti-
mator must be built for each data block.

• Convex merge step: With respect to equation (12),
the ’sum’ of two estimators, which constitutes the new
estimator, must be defined.

• Compression step: The overall estimator must be
compressed so that it fits into the available memory.

5 Adaptive Wavelet Density Estimators over
Data Streams

In the following, we investigate the specification of the
above processing steps for WDEs. Due to their implemen-
tation within the framework, the resulting online WDEs in-
herently meet the processing requirements for streams. In
particular, they allocate only a constant amount of memory,
which they even can adapt to changing system resources.

5.1 Computation of a Block WDE

The first step is to choose the underlying wavelet family.
Due to their convenient properties, Daubechies wavelets are
a suitable choice. The second step is to decide for linear or
thresholded WDEs and to compute the corresponding reso-
lution jlin

1 or jthr
1 for the given data block. The next step is

to compute the empirical scaling coefficients for this reso-
lution as described in equation (6). By means of the DWT,
they are decomposed into scaling and wavelet coefficients
of lower resolutions. For thresholded WDEs, these resolu-
tions are jthr

0 , ..., jthr
1 − 1. We additionally apply in case

of thresholded WDEs a level-dependent thresholding pro-
cedure to the empirical wavelet coefficients. Eventually, we
have a set of non-zero empirical scaling and wavelet coeffi-
cients. Their entirety constitutes the block WDE.

5.2 Convex Merge Step

A vital feature of the framework is the convex merge of
the current overall estimator and the new block estimator.
To define this merge step for the case of WDEs, we exploit
their wavelet series expansions.

Without loss of generality, we consider the convex merge
of the first two block WDEs, i.e. ĝ2(x) = (1− ω̃2)f̂1(x) +
ω̃2f̂2(x). As we will see, a necessary prerequisite for the
merge is that both WDEs have the same scaling resolution.
For that reason, we use the DWT to transform the scaling
coefficients of both WDEs down to the minimum j0 of their
current scaling resolutions. Let {ĉ(1)j0,k : k ∈ Z} and {ĉ(2)j0,k :
k ∈ Z} be the empirical scaling coefficients of the wavelet
series expansions of f̂1 and f̂2 respectively. In the same
manner, we denote the empirical wavelet coefficients of f̂1
and f̂2 as {d̂(1)

j,k : j, k ∈ Z, j ≥ j0} and {d̂(2)
j,k : j, k ∈ Z, j ≥

j0}. Let those sets also comprise the coefficients with value
zero as it facilitates the introduction of the merge step. By
means of the wavelet series expansion of f̂1 and f̂2, we can
decompose ĝ2 as follows

ĝ2(x) = (1 − ω̃2)f̂1(x) + ω̃2f̂2(x)

= (1 − ω̃2)
∑
k∈Z

ĉ
(1)
j0,kφj0,k(x)

+(1 − ω̃2)
∑
j≥j0

∑
k∈Z

d̂
(1)
j,kψj,k(x)

+ω̃2

∑
k∈Z

ĉ
(2)
j0,kφj0,k(x) + ω̃2

∑
j≥j0

∑
k∈Z

d̂
(2)
j,kψj,k(x)

=
∑
k∈Z

ĉ
(3)
j0,kφj0,k(x) +

∑
j≥j0

∑
k∈Z

d̂
(3)
j,kψj,k(x).

with ĉ
(3)
j0,k = (1 − ω̃2)ĉ

(1)
j0,k + ω̃2ĉ

(2)
j0,k and d̂

(3)
j,k = (1 −

ω̃2)d̂
(1)
j,k + ω̃2d̂

(2)
j,k . Hence, the convex merge step of two

4

block WDEs is simply the convex merge of their empirical
coefficients. This is a remarkable result as we can merge
two functions without even evaluating them. An important
aspect in this context is that the result of the merge, the new
overall WDE, is also given in its wavelet series expansion.
Thereby, we can merge the current overall WDE and a new
block WDE in the same manner, i.e., this procedure is a
valid realization of the merge step for WDEs.

Having this merge procedure in mind, the prerequisite of
the same scaling resolution for both WDEs becomes clear.
In case they would differ, the resulting estimator would in-
clude scaling coefficients of different resolutions, which no
more complies with the definition of the wavelet series ex-
pansion in equation (2).

A valuable side effect of the merge procedure is that
we expect the resulting number of empirical coefficients
after the merge to be smaller than the number of the con-
tributing empirical coefficients. As all block WDEs follow
the same distribution, the occurrence of similar features is
likely. Since these features are described by the same empir-
ical coefficients, we expect a high number of ’merge part-
ners’. The merge of these coefficients in turn reduces the
number of coefficients.

Figure 1 depicts an example for the convex merge of
two functions given in their wavelet representations. Both
are represented with respect to Daubechies2 wavelets. The
weight ω̃ for the merge is set to 0.75.

Figure 1. Convex merge of two functions
given in their wavelet series expansion

5.3 Compression Step

The compression step is subsequent to the merge step.
In case the new overall WDE does not fit into the available
amount of memory, we must perform a suitable compres-
sion. As the memory allocation of a WDE is basically deter-
mined by its empirical coefficients, we compute the maxi-
mum number of coefficientsM with respect to the available
amount of memory. Hence, the task we tackle in the follow-
ing is how to trim a WDE’s coefficient number down to M

in a suitable manner.
In Section 3, we already introduced a convenient strategy

for compressing a function given in its wavelet series ex-
pansion. This strategy discards the least significant local de-
tails. In wavelet terminology, these details correspond to the
wavelet coefficients with lowest absolute value. Therefore,
we must sort the entirety of empirical wavelet coefficients
by their absolute values and discard the required number of
coefficients. Let us emphasize that this proceeding should
not be applied to scaling coefficients. If we would proceed
analogously with them, we would delete global features of
the function and obscure its shape.

It may occur that all wavelet coefficients were discarded
and the remaining scaling coefficients still allocate too
much memory, i.e., their number exceeds M . In that case,
the DWT gives us a simple solution. We decompose the
scaling coefficients into scaling and wavelet coefficients
of the next-lower resolution. Important in this context is
that this gives us roughly half as many scaling coefficients.
Again, we discard the resulting wavelet coefficients with
lowest absolute value. The repeated application of this pro-
cedure ensures that we eventually get a set of coefficients,
whose number is less or equal to M .

However, discarding wavelet coefficients always intro-
duces a compression error because we loose local details.
We introduce a measure for the relative error resulting from
a compression step. Let ĝ be the current overall WDE be-
fore and ĝc the one after the compression. Let I ⊂ Z×Z be
the set of indexes (j, k) of the discarded empirical wavelet
coefficients d̂j,k. For the L2-norm of the compression error
e(x) := |ĝ(x) − ĝc(x)|, it follows

||e||22 = ||
∑

(j,k)∈I

d̂j,kψj,k(x)||22 (13)

=
∑

l,m∈Z
|〈

∑
(j,k)∈I

d̂j,kψj,k(x), ψl,m〉|2

=
∑

(j,k)∈I

d̂2
j,k.

The first equation relies on Parseval’s identity [13] and the
second one on the orthonormality of wavelets. With respect
to this identity, we define the relative compression error
as

err :=
||e||22
||ĝ||22

=

∑
(j,k)∈I

d̂2
j,k∑

j,k∈Z
d̂2

j,k

. (14)

The squared sum of wavelet coefficients is often defined as
energy. Hence, the relative compression error quantifies the
percentage of lost energy.

Overall, with the compression step, we completed the
discussion of the processing steps required for using the

5

framework. Algorithm 1 summarizes the general steps for
computing WDEs over data streams.

Let us now consider the adaptation to changing system
resources. We have to distinguish between two cases: an
increase or decrease of the available amount of memory.
In case the available memory of the overall WDE, i.e., its
maximum number of coefficients, is increased, we simply
determine a new maximum number. In case it is decreased,
we can use the same mechanism as in the compression step
to reduce the coefficient number. We successively discard
the empirical wavelet coefficients with the lowest absolute
values. In this context, the relative compression error can
be used to quantify the loss in accuracy for different com-
pression ratios before the actual compression is carried out.

Algorithm 1 Adaptive WDEs over a data stream
1: for each incoming element do
2: insert element into current data block;
3: if block size ≥ b then
4: increment block counter i;
5: compute WDE f̂i for the block elements;
6: if i = 1 then
7: ĝi = f̂i;
8: else
9: compute weight ω̃i;

10: decompose empirical scaling coefficients of ĝi

and f̂i down to the minimum of their scaling
resolutions;

11: set ĝi as convex merge of ĝi−1 and f̂i with
weight ω̃i;

12: end if
13: set Ms as number of empirical scaling coefficients

of ĝi;
14: set Mw as number of empirical wavelet coeffi-

cients of ĝi;
15: while Ms +Mw > M do
16: if Ms > M then
17: discard all empirical wavelet coefficients;
18: decompose empirical scaling coefficients

down to the next lower resolution;
19: update Ms and Mw;
20: else
21: p = 1 − M−Ms

Mw
;

22: sort empirical wavelet coefficients by ab-
solute value in descending order;

23: discard the last p ·Mw empirical wavelet co-
efficients;

24: end if
25: end while
26: transfer ĝi;
27: end if
28: end for

5.4 Algorithm Analysis

Before we go into the details of the algorithm analysis,
let us briefly discuss the implementation concept for a data
structure storing a set of empirical coefficients. We utilize a
combined data structure termed coefficient set, which con-
sists of a sorted list. Each list entry corresponds to one
resolution and stores all coefficients of this resolution in a
height-balanced binary search tree. The list is sorted by the
resolution, while the trees are sorted by the translation in-
dex. Generally, a WDE has two coefficient sets: one for the
scaling and one for the wavelet coefficients.

With respect to this implementation, let us summarize
the computational complexity for processing a data block
with b elements and updating the overall WDE.

The complexity of computing a block WDE is deter-
mined by the computation of the empirical scaling coeffi-
cients and the subsequent DWT. Recall from Section 3 that
the number of empirical scaling coefficients to compute is
linear in the size of the underlying sample. In combina-
tion with equation (6) follows a complexity of O(b2) for
the coefficient computation. As the DWT has complexity
O(b log b), the computation of a block WDE has an overall
complexity of O(b2).

The computational complexity of the merge step is as
follows. The current overall WDE stores O(M) empiri-
cal coefficients; M is their maximum number. The block
WDE stores O(b) empirical coefficients. Scaling all coef-
ficients of the overall WDE with the new weight has com-
plexity O(M). The scaling and subsequent insertion of the
coefficients of the block WDE into the coefficient sets of
the overall WDE has complexity O(b logM). Hence, the
merge step has complexity O(M + b logM).

The complexity of the compression step depends on the
coefficient number of the overall WDE. After the merge
step, this number is O(M + b). Sorting the elements by
their absolute values and deleting the required number has
complexity O((M + b) log(M + b)).

If we combine the complexities of each step, we get an
overall complexity of O(b2 + (M + b) log(M + b)) for
processing a block of b elements.

5.5 Multivariate Wavelet Density Estima-
tors

Finally, we sketch the case of WDEs over multidimen-
sional streams. The crucial step is the computation of
the block WDEs, i.e., how is a WDE over d-dimensional
data defined? The starting point is a multivariate MRA
[20] for L2(Rd). This MRA can be exploited to define
the wavelet series expansion of the unknown d-dimensional
density with respect to a set of d-dimensional wavelet basis
functions. By estimating the according scaling and wavelet

6

coefficients of this expansion, a WDE can be established.
Analogous to the onedimensional case, the possibly infinite
number of empirical coefficients must be reduced by suit-
able strategies. For the case of multivariate linear WDEs,
an according strategy has been developed in [19].

Given suitable block WDEs, we can compute overall
WDEs in the same manner as in the onedimensional case.
While processing the stream, we successively merge the
empirical coefficients of the overall WDE with those of the
current block WDE and, if necessary, trim their coefficient
number by omitting those with lowest absolute value.

6 Related Work

The practical relevance of data stream processing and
analysis has initiated the development of a plethora of tech-
niques for mining and querying transient streams. In gen-
eral, a mining technique must fulfill restrictive processing
requirements to be applicable to a data stream [7]. Some
mining techniques for static data sets were already success-
fully adapted to streams, e. g. approximate histograms [12],
change detection [1].

The focus of our work is the estimation of continuous
densities. In general, density estimation serves as core oper-
ation in many probabilistic learning methods [11]. A well-
established method for density estimation utilizes kernels
[17]. Kernel density estimation was successfully applied
in many different scenarios, e.g. range query selectivity es-
timation [6]. Concerning its application to data streams,
[3] provides an online approach that merges kernels located
close to each other in order to fulfill preset memory require-
ments. In [18], an online variant of kernel density estima-
tors is utilized to detect outliers in sensor networks. As al-
ready sketched in Section 4, we developed in [2] a frame-
work for maintaining nonparametric estimators over data
streams and placed kernel density estimators on top of it.
In this work, we used the framework to adapt wavelet den-
sity estimators to data streams. We already presented an
early stage of this work in [14].

The mathematical theory of wavelets is extensively dis-
cussed in [13, 5] and their application for statistical mod-
eling purposes in [8, 13]. Wavelets were also successfully
applied in different data mining techniques as the compre-
hensive overview in [16] illustrates. One of the most com-
mon applications of wavelets is the discrete transformation
of numerical values, accompanied by a compression. These
wavelet synopses aim to minimize the compression error
with respect to the given values. Similar to this approach,
[9] uses Fourier analysis to approximate an underlying fi-
nite signal. Up to this point, several approaches for efficient
wavelet synopses were proposed, e.g. probabilistic ones [4].
Wavelet synopses offer to approximate simple aggregate,
range, or inner product queries. In [10], a continuously

maintained sketch of a data stream provides an approxima-
tion of wavelet coefficients during runtime. In contrast to
those approaches, we exploit wavelets for estimating an un-
known function in a well-defined manner.

7 Experimental Results

In order to assess our WDEs over data streams, we car-
ried out a set of experiments, whose core results we present
in the following. In the experiments, we examined the es-
timation accuracy of our WDEs and compared them with
three competitive density estimation techniques for streams.
Another aspect we addressed is how our WDEs react to sud-
den changes of the amount of available memory.

7.1 Test Environment

Data Streams As real-world data streams, we chose a
set of time series from the UCR Time Series Data Mining
Archive [15], which provides a large collection of time se-
ries from diverse application scenarios. Due to space con-
straints, we present in this work only the results for the fol-
lowing streams: Burstin, Physiological Data B1, Standard
and Poor 500, Tide. We also examined other streams from
this archive and basically observed the same trends for them
in the results.

Besides the real-world streams, whose densities are per
se unknown, we also examined Claw and CP2 [14], two
synthetic streams whose true densities are known.

Techniques The objective of the experimental evaluation
was to scrutinize the online WDEs presented in the pre-
vious sections. To convey an impression of their perfor-
mance, we compared them with three other nonparametric
techniques providing density estimates over data streams: a
kernel technique based on the previously discussed frame-
work [14], dynamic histograms [12], and M-Kernels [3].
For the sake of a fair comparison, each technique allocated
the same amount of memory in the experiments, which we
ensured by adequate parameter settings.

The online WDEs and the online kernel-based density
estimators (KDE) rely on the framework presented in Sec-
tion 4. Both processed data blocks consisting of 500 el-
ements and weighted each block estimator equally. The
memory requirements of online KDEs, which use cubic
splines in the compression step, are determined by the num-
ber of spline coefficients. While their maximum number
was set to 300, the maximum number of empirical coef-
ficients of online WDEs was set to 100. The other para-
meter settings of online WDEs are based on the strategies
discussed in Section 5. As underlying wavelet family, we
decided for Daubechies5 wavelets as they produced the best
results throughout the experiments.

7

Dynamic histograms (DynHist) [12] use a continuously
maintained sketch of the stream to derive an approximate
histogram with k buckets on demand. However, the com-
putation of the histogram comes along with a heavy com-
putational burden. From the different variants of DynHist
presented in [12], we implemented an improved version of
GREEDY which computes the optimal buckets in each iter-
ation. As DynHist is a discrete method, we had to discretize
the data domain into 100 bins of equal size beforehand. A
larger number of bins did not improve the estimation quality
significantly. Note that this binning presupposes the knowl-
edge of the data range, a requirement that is not met in most
real-world applications. This fact adversely affects the ap-
plicability of histograms. Concerning the memory require-
ments of DynHist, we set the size of the sketch to 100 units.

M-Kernels [3] provide kernel density estimators over a
data stream. While processing the stream, a set of so-called
M-Kernels is continuously maintained by merging the clos-
est ones if necessary. A prerequisite for this merge is the
numerical approximation of a minimum of a function by
means of the downhill simplex algorithm. In our implemen-
tation, we set the number of iterations of this algorithm to
30. Additionally, a numerical approximation of an integral
is required. On account of this necessity, we implemented
the compound Simpson’s Rule with 50 partitions. We also
performed experiments with higher numbers of simplex it-
erations and integration partitions. This massively increased
the processing time, but did not improve the estimation ac-
curacy significantly. The memory requirements of this tech-
nique are basically determined by the number of M-Kernels,
which we set to 160 in the experiments.

Quality Measure As accuracy measure for the difference
between a continuously computed density estimate ĝ and
the density f that is to be estimated, we utilize the mean
squared error (MSE):

MSE(f, ĝ) :=
1

100

100∑
i=1

(f(xi) − ĝ(xi))2 (15)

where x1, ..., x100 is an equidistant partition of the support
of f . While processing the stream, we computed the MSE
after each 500 processed elements.

7.2 Quality for Real Data Streams

In the first set of experiments, we assessed the con-
sistency of online WDEs. Hence, the main question was
whether their estimation quality improves with the num-
ber of processed elements? To answer this question, we
computed the best offline WDEs for the real-world streams.
The best offline WDEs for a given stream refer to the best
linear WDE, the best WDE with soft thresholding, and the

best WDE with hard thresholding, each of them computed
over the complete stream having unlimited memory at their
disposal. While processing a data stream, we continuously
compared the current online WDE with the corresponding
offline WDE in terms of the MSE. Figure 2 displays the re-
sults for the different streams.

For all streams, we observe similar tendencies, namely a
decreasing of the MSE the more elements are processed.
This is an important result as it substantiates the consis-
tency of our online WDEs. The more stream elements they
process, the closer they approach the best offline WDE,
even though they have only a very small amount of mem-
ory at hand. It is also worth mentioning that the MSE for
the different streams is very low, mostly at around 10−4 and
10−5. Generally, the MSE decreased very smoothly except
for Standard and Poor 500, where it abruptly jumped.

Concerning the performance of the WDE types, linear
WDEs achieved the best results; the thresholded variants
were inferior. A closer look at the online thresholded WDEs
revealed that their bounded number of coefficients did not
allow them to capture all local details of their offline coun-
terparts, which featured a very large number of coefficients.

Overall, we can state that our online WDEs only require
a small amount of memory to keep pace with the stream and
to provide suitable estimates of its density.

7.3 Quality for Synthetic Data Streams

The second set of experiments is similar to the first set,
except that we examined synthetic streams, whose densities
are known. The computation of the MSE with respect to
the known densities allows us a fair comparison of our on-
line WDEs with the competitors discussed above. Figure
3 presents the results for the different techniques. For rea-
sons of clarity, online WDEs with hard thresholding are not
displayed in this figure; they performed very similar to the
variant based on soft thresholding.

As this figure indicates, M-Kernels were clearly inferior
to all other techniques. We traced this effect back to their
inadequate setting of the bandwidth, the essential parameter
of a kernel density estimator.

For both synthetic streams, online linear WDEs and
online KDEs achieved comparable estimation accuracies.
While both were inferior to DynHist for the Claw stream,
they were superior to DynHist for the CP2 stream.

Online thresholded WDEs have proved to be best; they
outperformed all competitors for both streams.

We observe for all techniques only a slight decreasing of
the MSE which, however, was very low for online WDEs.

Besides the estimation accuracy, we also examined in
this experiment the processing time of each technique as
this is a crucial factor in stream applications. More pre-
cisely, we measured the absolute processing time each tech-

8

Figure 2. MSE of online WDEs for real-world streams

Figure 3. MSE of online WDEs and competitors for synthetic streams

nique required for processing the complete Claw stream.
Table 1 summarizes the measurements.

Linear WDE Soft Thresh WDE KDE
9 13 11
M-Kernels DynHist k:10 DynHist k:15
2473 14253 21548

Table 1. absolute processing times (in sec)

In terms of processing time, online WDEs and KDEs
outperform DynHist and M-Kernels by orders of magni-
tude. Concerning DynHist, the expensive computation of
an approximate histogram from the current sketch caused
the high processing times. We also examined DynHist
with more buckets, which resulted in better estimates, but
even higher processing times. Concerning M-Kernels, the
numerical approximations mentioned above caused a high
computational effort.

Overall, if we take the estimation accuracy and the

processing time into account, we can state that online
thresholded WDEs are clearly superior to DynHist, online
KDEs, and M-Kernels.

7.4 Memory-Adaptivity

We emphasized in this work the necessity of memory-
adaptivity as it is a fundamental prerequisite for using an
online analysis technique in a complex application. For
that reason, we examined how online WDEs react to sud-
den changes of their available amount of memory.

The experiment we conducted had the following setup:
Over a stream of CP2 data, we computed online linear
WDEs. While processing the stream, we randomly varied
the number of empirical coefficients of the online WDEs
from minimum 10 to maximum 100 always after 5000 ele-
ments had been processed. To measure the effects of these
memory modifications on the estimation accuracy, we com-
puted the MSE between current WDE and CP2 density. Fig-
ure 4 summarizes the results of this experiment. In the

9

charts, the x-axis displays the number of processed ele-
ments and the left y-axis the current MSE. The right y-axis
displays the current number of empirical coefficients.

Figure 4. MSE of online WDEs for varying
amounts of memory

We observe that online WDEs reacted in a flexible and
adaptive manner to the changes. Significant reductions of
the available memory adversely affected the estimation ac-
curacy as the suddenly increasing MSE indicates. However,
online WDEs quickly ’recovered’ in terms of a henceforth
decreasing MSE.

Thus, we can state that online WDEs meet the require-
ment of memory-adaptivity; they quickly adapt to chang-
ing amounts of available memory and succeed in providing
suitable estimators meanwhile.

8 Conclusions

In this work, we investigated the nonparametric estima-
tion of the probability density function of a data stream. We
particularly concentrated on wavelet-based density estima-
tors as they are superior to other nonparametric approaches
based on kernels or histograms.

We derived our wavelet density estimators from a frame-
work for maintaining nonparametric estimators over data
streams. Basically, we build separate estimators for disjoint
data blocks of the stream and successively merge them into
an overall estimator. A well-defined compression scheme
allows us to adapt the allocated memory of the estimator to
the current system resources.

By means of an experimental evaluation, we have shown
the feasibility of our approach. In comparison to dynamic
histograms and M-Kernels, two competitive density estima-
tion techniques for streams, our estimators were superior in
terms of estimation quality and processing time. They also
practically approved their ability to adapt to changing sys-
tem resources in a convenient manner.

In our future work, we aim at coupling our estimators
with change point detection methods in order to capture
changes in the distribution underlying the stream. We will
also delve more deeply into wavelet density estimators

over multidimensional streams, an aspect we only briefly
sketched in this work.

Acknowledgements
This work has been supported by the German Research
Society (DFG) under grant no. SE 553/4-3.

References

[1] S. Ben-David, J. Gehrke, and D. Kifer. Detecting Change in
Data Streams. In VLDB, 2004.

[2] B. Blohsfeld, C. Heinz, and B. Seeger. Maintaining Non-
parametric Estimators over Data Streams. In BTW, 2005.

[3] Z. Cai, W. Qian, L. Wei, and A. Zhou. M-Kernel Merging:
Towards Density Estimation over Data Streams. In DASFAA,
2003.

[4] A. Deligiannakis, M. Garofalakis, and N. Roussopoulos. A
Fast Approximation Scheme for Probabilistic Wavelet Syn-
opses. In SSDBM, 2005.

[5] R. A. DeVore and B. J. Lucier. Wavelets. In Acta Numerica
1. Cambridge University Press, 1992.

[6] C. Domeniconi, D. Gunopulos, G. Kollios, and V. J. Tsotras.
Selectivity estimators for multidimensional range queries
over real attributes. VLDB Journal, 2003.

[7] P. Domingos and G. Hulten. A general framework for min-
ing massive data streams. Journal of Computational and
Graphical Statistics, 2003.

[8] D. L. Donoho, I. M. Johnstone, G. Kerkyacharian, and D. Pi-
card. Density estimation by wavelet thresholding. The An-
nals of Statistics, 24(2), 1996.

[9] A. C. Gilbert, S. Guha, P. Indyk, S. Muthukrishnan, and
M. Strauss. Near-optimal sparse fourier representations via
sampling. In STOC, 2002.

[10] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss.
Surfing Wavelets on Streams: One-Pass Summaries for Ap-
proximate Aggregate Queries. In VLDB, 2001.

[11] A. Gray and A. W. Moore. Nonparametric Density Estima-
tion: Toward Computational Tractability. In ICDM, 2003.

[12] S. Guha, P. Indyk, N. Koudas, and N. Thaper. Dynamic
Multidimensional Histograms. In SIGMOD, 2002.

[13] W. Härdle, G. Kerkyacharian, D. Picard, and A.Tsybakov.
Wavelets, Approximation, and Statistical Applications.
Springer Verlag, New York, 1998.

[14] C. Heinz and B. Seeger. Wavelet Density Estimators over
Data Streams (short paper). In SAC, 2005.

[15] E. Keogh and T. Folias. The UCR Time Series Data Mining
Archive. www.cs.ucr.edu/˜eamonn/TSDMA, 2002.

[16] T. Li, Q. Li, S. Zhu, and M. Ogihara. A Survey on Wavelet
Applications in Data Mining. In SIGKDD Explorations,
2002.

[17] D. W. Scott. Multivariate Density Estimation : Theory,
Practice, and Visualization. John Wiley & Sons, 1992.

[18] S. Subramaniam, T. Palpanas, D. Papadopoulos, V. Kaloger-
aki, and D. Gunopulos. Online Outlier Detection in Sensor
Data Using Non-Parametric Models. In VLDB, 2006.

[19] K. Tribouley. Practical estimation of multivariate densities
using wavelet methods. Statistica Neerlandica, 49(1), 1995.

[20] B. Vidakovic. Statistical Modeling by Wavelets. John Wiley
& Sons, 1999.

10

